いると思われる。この溶媒性は液晶の種類、開始剤の種類によって同じである。

P₂の赤外線スペクトルはMillerらのスペクトルと760cm⁻¹に吸収があるという点について異なっている。しかしMillerらの報告では重合開始剤や重合の溶媒等についての詳細が記載されていなかったため正確な比較はできない。この760cm⁻¹と753cm⁻¹の吸収が現われる重合体P₂は、Millerらのいわゆるα型にβ型の混合したものか、あるいはFoxらのいわゆるisotacticとsyndiotacticとのブロック共重合物になっているとも考えられるが、この点については更に検討を要する。このP₂の760cm⁻¹と753cm⁻¹の吸収に着目すると図3に示すように溶媒によって多少異なっている。このことはP₂が一つの構造を持たない重合体でないことを示していると思われる。

P₃とP₂を同じ倍の分子量のものとくらべてみると、P₃はP₂と同じような赤外線スペクトルを示すが、溶媒性はむしろP₁に近い。この二つの試料の吸収はP₂よりP₃の方が多大し、いずれも重合体の単量体単位100個に1個という非常に少ない割合でしか金属マグネシウムを含んでいないので、P₂の溶媒性はマグネシウムが重合体に結合しているためでなく、重合体の分子構造に依存するものと考えられる。

重合体の結晶性という問題があるが、X線回折から結晶性であるとの確認までには至らなかった。しかし試料の処理方法等についてなお検討する余地がある。

6 結 論

M.M.A.をグリニャール試薬（n-ブチルマグネシウムブロマド）で重合すると、溶媒の種類および重合温度による重合率と分子量の変化を示し、得られる重合体が、今までの遊離ラジカル型のポリM.M.A.と溶媒性、赤外線スペクトルが異なることを示し重合体の分子構造に変化をきたしているだろうと考えた。しかしこの分子構造についてはなお検討しなければならない。また赤外線スペクトルについての詳細は別に発表する予定である。

昭和33年11月7日、日化東海支部大会講演

本研究を行なうにあたり有益な助言と指導を賜わたった西岡篤夫高分子研究室長、赤外線スペクトルの測定とその解析をしていただいた阿部恭、柳沢一義両研究主任に感謝致します。

N-メチロール・アクリルアミドの水溶液重合†

（昭和34年11月30日受理）

鴨川 博美・関谷 登志以

N-メチロール・アクリルアミドのK₂SO₄およびH₂O₂による水溶液重合、およびこれとアクリルアミドとの共重合の問題について述べる。重合度（極端粘度）等を検討した。メチロール・アクリルアミドの水溶液重合では、pH4程度以下の酸性においてはゲル化を起こし、中性の場合には特に塩酸塩にモノマー濃度、触媒濃度、重合温度等の影響が強くあらわれ、また重合度に対する重合率の影響は比較的小さく、イソプロポニールは良好な重合度調節剤である。生成ポリメチロール・アクリルアミド水溶液は電解質類似の粘度等の挙動を示し、Hugginsのk'はpH依存性があり、これはポリメチロール水溶液の電荷解離の解離により解釈される。アクリルアミドとの共重合のr₁=2.9±0.4、r₂=0.9±0.2であり、10%溶液の場合の水溶液共重合度および生成ポリマーのHugginsのk'はアクリルアミド側で大であり、[7]はほとんど共重合度により変である。これよりアクリルアミド側においてはメチロール・アクリルアミド側より重合度が大きいと推定される。

1 統 言

アクリルアミド（AM）の水溶液重合については既にSchulzらにより報告されているが、これとアルコールアミドとのノリ化合物であるN-メチロール・アクリルアミド（MAM）の水溶液重合に関しては、現在の所らなら報文が見当たらない。しかしながらMAMはその有する二重結合による重合反応、およびメチロール基による総合反応により興味ある3次元ポリマーを生成すると考えられ、著者らもすでにアクリルアミドと人工乳共重合について報告したが、このような反応にもましてMAMおよびその誘導体を機能性に応用するにあたっても基礎となるのはMAMの重合であり、重合体のゲル化、粘度等性質等にも異の挙動が認められるので以下報告する。

2 試料および実験方法

2-1 試 料

N-メチロール・アクリルアミド（MAM）CH₂=CH-CONH₂-CH₂-OH：既報の方法でAMとパラニトールアルデヒドよりケイ酸カリを触媒としてメタノール中で合成したものを使、触媒として過酸化水素水（13.3g/100ml、130度）と過酸酸カリを使用した。

2-2 実 験 方 法

2-2-1 水溶液重合 内容100mlの共栓三角フラスコ中でMAM、開始剤等をリン酸系緩衝液でpH7に調節して100mlとし、空気の存在下に恒温水槽（±0.05℃）の中で重合を行なわせた。重合中適時に重合液をビペットにより採取し、これを多量のメタノールに投じ、生成したポリマーの沈殿を再び水に溶解させて2回再沈殿をくり返したものを装袋でケイソーダを乾燥剤として真空乾燥後秤量して重合率を求めた。この際P₃O₅等の酸
性乾燥剤および加熱はポリマーの架橋不溶化の原因となる。
2-2-2 粘度測定（水溶液） Ostwald 型粘度計により 30 ± 0.05°C の恒温槽中で行なった。重合度-[7] 関係は現在のところ確立されていないので、重合度に対応するものとして極限粘度を用いた。

3 実験結果および考察
3-1 メチロール基の総合反応
著者らはさきに AM とホルムアルデヒドとの酸触媒下における反応について検討し、70°C 程度の水溶液で主酸性下においてメチロール基同士の総合反応

\[
\text{CH}_2\text{OH} + \text{H}_2\text{O} \rightarrow \text{CH}_2\text{OCH}_2 \rightarrow \text{CH}_3
\]

pH 1.29, 70°C のような酸性条件下でも -CH_3OH 浴は不変であり上記の総合反応は事実上起こらないことが明瞭である。したがって普通の条件での水溶液重合が可能と考えられるが、過硫酸酸カリウム (KPS), H_2O_2 等の過酸化物触媒により図1と同様な条件で水溶液重合を行なわると図2のようにになり、pH 4 程度以下ではいちじるしく初期重合速度 (R_0) が増し、溶液はゲル化、固化する現象が認められた。ゲル化しない範囲の pH (4 <) では重合速度 R_0 は pH の影響をあまり受けず、図3に示したように重合度 ([7]) もアルカリ側では大した変化は認められなかった。なお図3においては pH 5 以下の酸性条件下で生成したポリマーは真空乾燥中に不溶化し測定不可能であった。また重合率の [7] におよぼす影響は後に示す諸図同様である。

図2に認められる酸性側のゲル化は明らかに過硫酸酸カリウム (KPS), H_2O_2 の作用によるものであり、既報[4]の結果よりも MAM ポリマーの一-CH_3OH 基がモノマーより特に総合反応を起こし易いとは考えられないから、これは KPS, H_2O_2 等の過酸化物触媒が-CH_3OH 基の総合触媒として作用するためではないかと考えられる。その総合機構は明らかでない前後の酸性総合機構と同一とは考えられないが、酸性においてより易しい点より考えると総合のラジカル反応によるものだけではないと思われる。

3-2 ポリメチロール・アクリルアミド (PMAM) 水溶液粘度の pH 依存性
MAM の水溶液重合により生成したポリマー水溶液の [7] および Huggins の h' は pH 依存性があり、その関係は図4のようにになる。

この場合の pH 調節は緩衝液を出来るだけ低濃度 (N/50 程度) で使用した。この結果を解析するには PMAM が水溶液中で高分子間接合類似の挙動を示すと考えるのが妥当のように思われる。ただし図5に示すように h_5/5-C-C 曲線には特に電解質特有の異常性は認められないので、その挙動は通常の電解質の場合とは異なり、部分的共鳴構造に近いと考えられる。
すなわちホルムアルデヒドの場合より通常すれば下記のような解離が PMAM 水溶液中である程度起ると考えられる。

pH 範囲

\[
\begin{align*}
5 &< -\text{C-NH}\cdot\text{CH}_2\text{OH} &\rightleftharpoons & -\text{C-NH}\cdot\text{CH}_2\text{O}^- + \text{H}^+ \quad (1) \\
0 &< -\text{C-NH}\cdot\text{CH}_2\text{OH} &\rightleftharpoons & -\text{C-N} \cdot\text{CH}_2^+ + \text{H}^+ + \text{OH}^- \\
< 2 &< -\text{C-N}\cdot\text{CH}_2\text{OH} &\rightleftharpoons & -\text{C-N}\cdot\text{CH}_2^+ + \text{OH}^- \quad (3)
\end{align*}
\]

いま、溶液の pH がアルカリ側より酸性側へ移行する場合を考えると、(1) の平衡は左に進みポリマーの解離は減少する結果、荷電の反発によるポリマー分子の棒状化は抑制される [7] は減少し逆に Huggins の \(k' \) は増加する。そして pH 2 ～5 付近では (2) の平衡が優先的となり、ポリマーは amphoteric の性質を示し、またその解離は少なく \(k' \) は最大となる。この領域を過ぎて更に pH が減少すると今度は (3) の平衡が優先的となってくるので再び \(k' \) は減少し [7] は増大する。図 4 においては、この [7] の低 pH 部分における増大が認められないが、これは pH 1 以上では (3) の影響がまだ出てこないことを意味すると解釈される。

3.3 MAM 濃度の影響

図 6 に重合率 - 時間曲線を示したが、KPS, H₂O₂ いずれも開始剤とした場合にもモノマー濃度増大とともに重合速度は増大する。この場合、空気共存下の重合であるため酸素による鎖端期があらわれ、これはモノマー濃度増大とともに減少する。図 7 はこの場合の [7] - 重合節関係であるが、重合率の影響は比較的小であり、また MAM 濃度の増大とともに重合度は増大するように思われる。しかしながら、図 6 よりも認められるように、重合速度には大きな差はないので、濃度差の小さい所では明確な関係は得られない。

3.4 触媒濃度の影響

5) Walker "Formaldehyde" p. 57 (1953).
アルコール類が経済的にもまた使用面よりも最も有利と考えられるが、その中でも著者らの試験の範囲ではイソプロパノールがもっとも効果的であった。その結果を図12に示す。この場合において“連鎖移動定数”は重合度の絶対値が測定不可能であるので、求められないが、これにより少なくとも著者らの目的とする重合度の重合速度を求ることが出来る。

3.7 アクリルアミド(AM)との共重合

MAMに対し、AMを水溶液共重合させる問題は未知の問題であり、架橋度の異なるポリマーを得る面でも重要と考えられるので、KPSを触媒として水溶液共重合を行なった。図13はその結果で、Fireman & Rossの方法7によりモノマーのreactivity ratio $r_1=2.9\pm0.4$, $r_2=0.9\pm0.2$であり、比較的共重合性は良好である。図14にその初期重合速度 (R_2) を示す。この場合軽導期は10～20分であり、単量体組成による明瞭な関係は得られなかったが、重合速度は

に重導期に大きな影響が認められる。[9]に対する重合率の影響はやはり図11に示すように小さく、重合度は重合速度とともに低下する傾向がある。

3.6 イソプロパノール添加の影響

PMAMの重合度を調節するいわゆる“連鎖移動剤”としては

AM側の方が MAM 側よりもやや大きい。この場合モノマー濃度は wt % であり、モル濃度では AM 側の方が大となるので、これはかならずも本質的な重合性の差を意味するものではなく、実質的には大差ないと考えられる。

3-8 共重合体の粘度の挙動

いま共重合体の ηsp/C-C 曲線を描くと図 15 のようになる。この場合も図5 同様、低濃度域においては大略直線関係が得られ、その ηsp/C 軸との交点より [η] を、また直線の勾配より

\[\eta_{sp}/C = [\eta] + k \cdot [\eta]^2 \cdot C + \cdots \cd - 7) Eirich, "Rheology" Vol. I, p. 590.