酸素下におけるフェノールとプタジェンの反応

（昭和35年11月21日受理）

河合 和三郎**・堤

フェノールがラジカル反応を受けるとき、phenoxy radicalを生成することが知られている。本報は酸素下のフェノールの酸化によって生ずるphenox radicalをプタジェンと反応させるとき、付加反応化合物（キノン型）を得ることを示し、フェノールをオレフィンに付加させる一方法として、また重金属析出として作用するときの中間体として興味あるものと考えられた。

1 緒 言

フェノール類は古くから抗酸化剤、重金属析出のとして知られ、ラジカルと反応して安定な化合物を生成する。たとえば Waters①は、p-クレゾールと過酸化ベンゾイルの反応において、phenox radicalを中間体と考えるとよく説明出来る化合物を単離している。最も代表的なのは、次のような反応である。

\[
\begin{array}{c}
\text{フェノール} \rightarrow \text{モノカルボニルフェノール}
\end{array}
\]

しかし、Cook①は、[I]を仮定して、[II]から[III]へのラジカル転位によって、[IV]を生成することを示唆している。Hayら⑤は、2,6-di tert-butyl-4-methylphenolについて、そのラジカル転位について研究を行なった。Hayらの反応機構は、フェノールと過酸化ベンゾイルの反応によつて、ヒドロテトラールのmonobenoquinoneを得るが、2,6-dimethylphenolで、 oxidative couplingによって、ポリマーを得、1,4-phenylene ether2,6-derivativeのポリマーの合成法として報告している。末広らは、フェノールと過酸化ベンゾイルの反応によって、ビンテトラールのmonobenoquinone、o,o'-dihydroxy-diphenylを得ており、[I]の種々のphenox radicalを示している。[I]のようなラジカルが、他のラジカルと反応して、生成の2量体反応（または多重化反応）を起こすことと、安定な化合物をつくる場合がある。プタジェンは自発酸化されて早く、Kawahara③は、1,3-メチルプタジェンについて研究したが、これはプタジェンがラジカルによって、容易にラジカルを生成するものと考えられるよう。

本報においては、フェノールとプタジェンを酸素圧下に反応させ、両者の化合物である（II）を単離し、またフェノール自身の2量体反応によるものと思われる（I）が得られ、その外確実に構造はわからていないが、phenox radicalがプタジェンと反応して得られたと考えられる物質（高沸点化合物）をえた。

2 実験結果と考察

フェノールは市販品を常圧蒸留し、bp 181℃のものを使用し、プタジェンは Oronite 製のものをボンベよりドライアイス-アセトン浴中に冷却したトラップに一定量をとり、石油エーテル 20ccを加えて希釈溶解し、この冷却したプタジェンの石油エーテル溶液をあらかじめ水で冷却したオートクレープ中に仕込んで、さらに、フェノール 52cc、プタジェン 60cc、石油エーテル 20ccの混合物を、オートクレープに仕込んで、酸素を20atmまで圧入した後、昇温して80℃で5時間かきまぜて反応させ、4atmの酸素反応を認めたところで、反応をとめる。反応生成物に、石油エーテル200ccを投げ希釈し、カセイソーダ水溶液によりフェノール性分を抽出する。この水溶液を1N塩酸で中和すれば油状物を生じ、石油エーテルにてくり返し抽出する。石油エーテル乾燥後、エーテルを留去すれば、フェノール臭の強い油状物を残すので、水蒸気蒸留にかけて、未反応フェノール 33gを回収した。水蒸気蒸留の残留物をエーテル抽出し、石油エーテル乾燥後、エーテルを留去、減圧蒸留に付与と次の分を留去する。115〜120℃/7mmHg、2.6g、メタノール-リドロインより再結晶すればmp 253〜257℃で元素分析C:77.23%, H:4.70%, CaH202(Ⅰ)としての計算値C:77.41%, H:5.73%なる黄色針状結晶を得る。残留物には黑色の結晶状物5.5gを得る。

フェノール性分抽出後のエーテル層を放置しておくと、オレンジ色の結晶0.6gが析出し、ベンゼン-石油エーテルより再結晶すればmp 275℃で、元素分析C:82.16%, H:7.11%、CaH202(ⅡaまたはⅡb)としての計算値82.19%, H:6.91%である。

赤外線吸収スペクトルは図1に示されるが、5.96μ に明らかに共役ケトンの吸収を認め、6.25μ には共役二重結合の吸収を、また 8.52μ には、ケトンの吸収を認めることができる。また、10.25μ, 10.62μ にはベンゼン型二重結合、12.3μ, 12.65μにはベンゼン型二重結合の吸収が認められる。10.25, 10.62μ のトラ
ンス型は、プロテイン unit からのものであり、12.3, 12.65 µ は、プロテインおよびキノン類によるものと考えられるが、本反応条件のごときにおいでは、プロテイン unit のシス型は考えにくく、キノン類によるものと考えられる。本結晶の分子量は、ラテストで測定した結果 315 と得られ、C₆H₆O₅ としての計算値は 292 であった。

つぎにポロ研磨乾燥したエーテル層のエーテルを留去し、残した油状物を減圧蒸留すれば、つぎの留分が得られる。

(i) 56～70°C/7 mmHg, 1.5 g
白色的結晶として得られ、回収フェノールであった。

(ii) 141～155°C/7 mmHg, 2.5 g
では、少量のオレンジ色の結晶が、昇華蒸発して来たが、全体としては黄色油状物として得られた。オレンジ色の結晶は、ベンゼン～石油エーテルより再結晶すると、mp 275°C で、さきに得られた結晶 (Ia または Ia) と同形しても、融点の降下を認めないもので、同一物質と認めた。

(iii) 212～220°C/10 mmHg, 5.4 g
は、非常に粘稠な半透明な油状物として得られ、n₁₀: 1.4862 である。

赤外線吸収スペクトルは、図 2 に示すとおりで、10.4 µ にtrans 1,4 二重結合の吸収が、僅かにみられ、また、6.8 µ には methyl 基の吸収が明確に観察される。7.35 µ には methyl 基の吸収を認めることは分子末端に不均斉化反応にメチル基の存在を示唆する。phenyl 基の存在は、6.25 µ および 13.65 µ に異常フェニル基の吸収が認められることから支持される。プロテインに phenoxy radical の addition 反応によるものと考えられが、構造は未解決のままである。分子量はラテスト法によ りて 514 と得られた。

以上の結果により、右のような反応の機構を考えた。

まず酸素による酸化により、phenoxy radical (A) を生成し、これは、ラジカル捕捉剤と考えられるプロテインと反応して、addition product を生成するが、自体は、またラジカル転位によって (B) または (C) となり (B), (C) が coupling して (D) なる反応と、(B) が (A) と同様にプタジェンと反応して (IIa) または (IIb) のようなキノンとなる。