ジクロルアセトアルデヒドとアルカリ水溶液の反応

（昭和35年12月26日受理）

大平 和夫・篠田 清徳・市毛 偉喜

ジクロルアセトアルデヒドを水酸化ナトリウムで処理すると、反応の進行度に無関係に3molのアルカリを消費し、2molの塩素イオンを遊離するという事実をみいただいた。分解反応生成物はグリコール酸のナトリウム塩であることを赤外線吸収およびp-ニトロベンジルエステルをつくり確認した。反応は

\[
\text{CHCl}_2CHO + 3 \text{NaOH} = \text{CH}_2(\text{OH})\text{COONa} + 2 \text{NaCl} + \text{H}_2\text{O}
\]

によって進行すると考えられる。

更に、反応速度論的検討を行なった結果、分解反応は速度が緩やかである場合でもアルカリに関して2次で、速くなると1次となり、それぞれ反応速度定数 \(k_3 = 3.41 \times 10^2 \)、\(k_1 = 1.47 \times 10^9 \) と \((1/\text{mol} \cdot \text{hr}) \) を得た。

\[
\text{CHCl}_2CHO + 3 \text{NaOH} = \text{CH}_2(\text{OH})\text{COONa} + 2 \text{NaCl} + \text{H}_2\text{O}
\]

（1）

\[
\text{分解率}(\%) = \frac{[\text{N}-\text{NaOH}] - [\text{0.2N-AgNO}_3]}{[\text{N}-\text{NaOH}]} \times 100
\]

（2）

2.3 分解生成物の確認

2-3-1 エステル化法

化学量論的なアミンとあわせてアルカリ分解物の確認のため次の実験を行なった。

図1に示すように、DA水溶液を既知濃度の水酸化ナトリウム溶液に投入し、0℃で48時間放置した。過剰の水酸化ナトリウムを1Nの硫酸で中和し（後出の生成塩化ナトリウムの補正のため）、減圧蒸留で乾燥した。若干褐色に着色した乾燥物をエタノールで洗浄脱色した後、乾燥塩酸と回収した塩酸ナトリウムを1次に分離した。乾燥で塩酸を除去したものを1Nの水酸化ナトリウムで中和し、理論値を上の反応の実験で用いて、65%エタノールで2回再結晶したものは、やや黄色を帯びた粉末またはリン片状（核を用いた場合の）の結晶で、mp 106℃（文献値 107℃）で、市販グリコール酸よりのエステルと混融しても、融点は低下せず、ラスト法による分子量219.5（理論値 211.16）を得た。

エタノール洗浄液を同様に処理した塩化ナトリウムおよび水酸

\[
\text{CHCl}_2CHO \overset{0.1 \text{M}}{\rightarrow} \text{NaOH} \overset{0.3 \text{M}}{\rightarrow}
\]

表1 アルカリ分解反応（室温）

<table>
<thead>
<tr>
<th>反応時間 (hr)</th>
<th>DA 1mol 消耗</th>
<th>NaOH</th>
<th>AgNO₃</th>
<th>分解率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.640</td>
<td>0.380</td>
<td>1.684</td>
<td>25.97</td>
</tr>
<tr>
<td>0.50</td>
<td>1.170</td>
<td>0.767</td>
<td>1.525</td>
<td>40.34</td>
</tr>
<tr>
<td>1.00</td>
<td>1.798</td>
<td>1.181</td>
<td>1.522</td>
<td>61.73</td>
</tr>
<tr>
<td>3.00</td>
<td>2.265</td>
<td>1.519</td>
<td>1.531</td>
<td>80.88</td>
</tr>
<tr>
<td>7.00</td>
<td>2.744</td>
<td>1.776</td>
<td>1.545</td>
<td>96.78</td>
</tr>
<tr>
<td>12.00</td>
<td>2.851</td>
<td>1.842</td>
<td>1.548</td>
<td>100.81</td>
</tr>
</tbody>
</table>

水酸化ナトリウムに対する硝酸銀の比は若干大きい値であるが、ほぼ1.5をもたれている。このことから、（1）式を仮定して導いた（2）式を分解率と定義した。

* 具羽化学工場：福島県刈谷市緑村。

2) 太田, 今村, 東工試 48, 311 (1953).
化ナトリウムの中和値を考慮すればほぼ満足的な量的関係が得られたことを示している。

2-2-3 赤外スペクトル法 塩酸分解し、塩酸ナトリウムを除した液状濃縮液を Perkin-Elmer Model 21 型分光器を用い、NaCl キャリブレーションで赤外線吸収を測定した。その結果を図2に示した。試料は 1050 cm⁻¹ の吸収を除いて市販品とおおむね一致した。

グリコール醚の赤外スペクトルは、Flett による 2580、2640、1730±5、1710±5 と 1213 cm⁻¹ の吸収帯が示されている。吸収帯を帰属するが試料にみられる 1050 cm⁻¹ は、第1級アルコールによるもので、主要な不純物と考えられる。1090 cm⁻¹ は第2級アルコールの CO 伸縮と OH 変角振動、1220 と 1430 cm⁻¹ はカルボン酸の CO 伸縮、または OH 変角振動、1725 cm⁻¹ は CO 振動、2500～3500 cm⁻¹ において広い吸収帯は COOH、OH 単独ないしは複合による伸縮振動に基づくもので、分解生成物はグリコール酸である。

2-4 反応速度

2-4-1 実験方法 鮫島の方法(4)によって実験した。2 個の 500 ml のカプセル型水分測定装置に、それぞれ試料液、水酸化ナトリウム水溶液 200 ml を入れ、恒温槽に浸した。両液が恒温槽の温度となったとき、水酸化ナトリウムを試料液中に一定時間注入し、ふり混ぜる。注入した後、反応の開始とした。フラスコの残アルカリを酸化滴定により決定し、使用量を補正した。あらかじめ 300 ml のエジレーマテラインフラスコ数個用意し、これに水酸化ナトリウムと同濃度の硫酸 25 ml ずつ注入して、実験装置に接続した 50 ml ビペットで反応液をとってこの中に注入した。過剰の硫酸を水酸化ナトリウムで逆滴定し、消費量から 1/3 量が DA であるとした。

2-4-2 反応温度の影響 1N の水酸化ナトリウムおよび 0.25 モル濃度の DA を用いて実験し、その結果を表2、3に示した。アルカリの消費速度は

\[-dA/dt = k_{1}A \cdot B\]

(Aa : NaOH の初濃度および t 時における濃度)

(Ba, B : DA の初濃度および t 時における濃度 (mol/l))

<table>
<thead>
<tr>
<th>実験番号</th>
<th>反応温度 (℃)</th>
<th>NaOH初濃度 (mol/l)</th>
<th>DA初濃度 (mol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>0.4999</td>
<td>0.1228</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.4904</td>
<td>0.1228</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>0.4906</td>
<td>0.1214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>実験番号</th>
<th>反応温度 (℃)</th>
<th>DA初濃度 (mol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>29.8</td>
<td>29.9</td>
</tr>
</tbody>
</table>

2-4-3 濃度の影響 2-4-2 と同様の方法で DA を 0.1 モル濃度として 20℃で行なった結果 2.0 = 30.4 (litre/mol/hr) を得た。実験番号6は更に水酸化ナトリウムを 0.1 N として実験した結果である。

<table>
<thead>
<tr>
<th>実験番号</th>
<th>反応温度 (℃)</th>
<th>DA初濃度 (mol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>20</td>
<td>0.04938</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>0.04911</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>0.04938</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>0.04938</td>
</tr>
</tbody>
</table>

4) M. St. C. Flett, J. Chem. Soc. 1951, 962。
5) L. J. Bellamy, The Infra-red Spectra of Complex Molecules。
6) 鮫島実三郎, 物理化学実験法。
DA の濃度が高く、アルカリに対し過剰な場合 k_1, k_2 いずれもが一定値を示さず、k_1 は小さく、k_2 は大きく反応の進行とともに極端な値をとる。反応は複合または複雑な形で進行するものと考えられる。

3 考察

アルカリ分解反応が濃度によって異なった反応形式をとるか、これは独立した逐次反応の一つがあたえられた条件で優先すると考えられる。

グリオキシールがアルカリと反応し不均化をおこし、グリコール酸塩になることが示されているので(7,8)。そのアルカリの消費について実験した。

表 6 のように、グリオキシールの摂取反応は DA に比較して速かに遅く、時間の経過とともに著しく遅くなることを示した。

表 6 グリオキシールのアルカリ消費速度 (5℃)

<table>
<thead>
<tr>
<th></th>
<th>反応時間 (hr)</th>
<th>k^* (I/mol-hr)</th>
<th>反応時間 (hr)</th>
<th>k^* (I/mol-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>740</td>
<td>0.50</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>520</td>
<td>3.00</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>261</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{D} \text{A}$ の α-水素原子は 1 個であり、アルドール縮合は困難であり、カルボニル反応形式が進行することが予想される。しかし、酸化応応が優先するため、グリオキシールを経て、グリコール酸塩になると考えるのを妥当である。すなわち、赤外吸収の結果、1050 cm$^{-1}$ の吸収帯は加水分解と並行するカルボニル反応形式の縮合反応である 1 級アルコールと考えられる。

以下の結果から著者らは次の反応機構を仮定した。

$\text{CHCl}_3\text{CHO} + 2\text{NaOH} = \text{CHO-CHO} + 2\text{NaCl} + \text{H}_2\text{O}$ (6)

$\text{CHO-CHO} + \text{NaOH} = \text{CH}_2(\text{OH})\text{COONa}$ (7)

DA のアルカリ分解反応速度は (7) 式のそれに比べて遅いかに小さく、反応は (6) 式によって左右されるが、反応の終了では (7) 式が律速段階となると考えると、低濃度の場合の実験番号

7) B. Homolka, Ber. 54, 1395 (1921).
8) 小林達夫訳、有機化学反応の機構 218.

7 および 8 の結果と一致し、時間とともに反応が速くなる現象をよく説明できる。しかし、アルカリが濃くなると、グリオキシールは瞬間的に反応し、(7) 式が律速になり得ないことを示した。

アルカリに関し 1 次で進行する場合、水酸化ナトリウムによる脱塩素で生成した中間体が不安定で、たとえ 1 mol のアルカリを消費し、グリオキシールになると考えられるが、全く別の場合をたどることも予想され、更に検討する予定である。

ついて $\log k$ 対 $1/T$ をプロットした図 3 から得られる活性化エネルギーは、ほぼ同程度の大きさで、反応速度定数は次のよう に表わすことができる。

$$k_1 = 1.47 \times 10^{19} e^{-\Delta H/RT}$$

$$k_2 = 3.41 \times 10^{19} e^{-\Delta H/RT}$$ (I/mol-hr)

昭和 34 年 4 月、日化第 12 年会で一部講演

終りに種々有益な御助言を賜った金沢大学工学部松井教授に厚く感謝します。