下における頻度因子 1.00×10^8 が無触媒のときのそれ、1.00×10^7 よりはるかに大であるからである。これは酸化アチミンの存在下における確率因子の無触媒のときの 10 倍の値を持つためであると考えられる。

活性化エントロピーは、グリコール酸の無触媒時におけるものが -21, 酸化アチミンの存在下におけるものが -13, そして

臭化カリウムの存在下におけるものは -6 程度の値を持ってい

る。これによって最終生成物が共にポリグリオリドであり、それらがほとんど同じエントロピー状態にあるとすれば、原系の状態

の確率が推定しうる。またグリコール酸の反応が -21 および

-13 の活性化エントロピーを持つ。モノグリコール酸の反応のそ

れが -6 であることは、それぞれ 3 次反応および 2 次反応の特

性を示していると考えられよう。

スチレン-無水マレイン酸共重合体を母体とするエステル化合物の高分子界面活性剤

（昭和 37 年 6 月 4 日受理）

齊藤 聖衛・砂沢 裕寿

スチレン-無水マレイン酸共重合体を母体とし、酸無水素を蒸発の割合に n-オクチルアルコール、および n-ラウリル

アルコールを用いて、それぞれ部分エマルションを残し、酸基を基のにしてアムニウム塩としたポリソープを合成し

た。生成物のエステル化度は 8.6% および 31.3% の範囲にあったが、ポリソープはいずれも溶媒によって溶解した。粘度お

より吸着可溶化能の測定から次のようなことがわかった。1）ポリソープの MEK 溶液粘度はエステル化合物およびアルキル

鎖長の増加とともに大きくなり、一方ポリソープ水溶液粘度は逆に低下がしたが、明らかに高分子電解質の挙動を示した。

2）イソブチル水可溶化重はエステル化度およびアルキル鎖長の増加につれて大きくなり、可溶化曲線はほぼ原点を通る。

1 緒 言

無水マレイン酸（MA）を共重合体の親水性成分とする重合体

はかなり古くからの研究1)、2) がなされており、たとえば、ス

チレン（St）、酢酸ビニル、アクリル酸エステル等との共重合体

は、サイズ剤、増粘剤、分散剤、乳化剤洗浄剤ビルダー等とし

て広く利用されている4)、5)。また St および MA の二成分重合体、あるいは St-MA 共重合体を部分エステル化、または部分アミド化して適度に炭水素を導入した重合体の

アルカリ界面活性剤は、水に溶解し、さらに触媒された乳化、分散等の界面活性を有することが多くの外国特許に記載されている5)、6)。

なお、これらの高分子化合物は化学構造、たとえば、共重合体の分子構造、エステル基、またはアミド基のアルキル鍵長、およびその含量などと界面化学的性質との関係を明らか

にしたものは見当らない。しかしながら、エマルション、あるいはアミド体の

アルキル鍵長は、ほとんど炭素数 1 ～ 2 程度が主で、長鎖

アルキル基を有するもの界面活性剤への利用研究はない。然

著者らは St と MA の共重合体（P-1, P-2）を母体ポリマー

とし、これに n-オクチルアルコール、および n-ラウリルアルコールを反応させて部分エステル化し、ついてアムニウム塩とな

した数種の変性共重合体を合成し、界面活性剤としての利用研究を

目的とし、これらの変性共重合体の化学構造と粘度、および

油溶性染料の可溶化能について検討したので報告する。

2 実 験 方 法

2-1 試 薬

MA は 1 級試薬をクロロホルムより 3 回再結晶をくり返して

mp 51～54℃ のものを用いた。

St は市販品をカセイカリの 10 倍の水溶液で洗って、着色不

なるまで洗浄し、ついて水洗、塩化カルシウムで乾燥後、少量の

イオウを加え、室温ガスを通じて減圧精留し、bp 69℃/58 mmHg

の留分を蒸留後直ちに用いた。

n-オクチルアルコールは 1 級試薬を減圧精留し、bp 76.5～77.0

℃/5 mmHg、水酸基値 430.3（理論値 430.1）の留分を用いた。

n-ラウリルアルコールは 1 級試薬を減圧精留し、bp 120～121

℃/5 mmHg、水酸基値 298.4（理論値 301.1）の留分を用いた。

n-ラウリルメタクリートは 1 級試料を減圧精留し、bp 101～102

℃/3 mmHg の留分を用いた。

2-2 母体ポリマーの重合

母体ポリマー P-1, P-2 は還流冷却器、温度計、窒素導入管、

密閉カマザ機を付した 2L の四つロフラスコに、あらかじめ
ンゼンに溶かした等モルの St と MA をそれぞれ加え、重合開始剤として、過酸化ベンゾイル（BPO）を用い、窒素気流下で加熱重合した。

P-2 には重合温度調整剤として、メタクリルアルカリプタノールを加えて重合度を低下させ、重合度の異なる 2 種を調製しました。重合条件を表 1 に示す。生成ポリマーはベンゼンに溶けず沈殿するため、これを塩に溶かし、ベンゼンで洗浄、乾燥のち、MEK に溶解、大過剰の石油エーテルで沈殿させ、更に再沈殿を 3 回繰り返して精製し、減圧下で乾燥した。

2-3 母体ポリマーのエステル化

母体ポリマー、アクリル、MEK をかきまぜ機、還流冷却器、恒温槽を付した 200 mL の三つロフラスコにより、70~80℃で 7.5〜12.5 時間反応させてから、30℃に冷却し、100 mL の MEK を加え、次に大過剰の石油エーテルでポリマーを沈殿させ、更に再沈殿を 2 回繰り返して精製した。生成物は白色粉末である。

2-4 ボリソープの調製

エステル化ポリマー約 2 g を秤取し、20 mL のアセトンを加えて一夜放置して溶解、28% アンモニア水 10 mL を加え、還流冷却器を付して 60℃に加熱し、アセトンを徐々に加えて均一な溶液となる。さらに、この溶液で 5 時間加熱してから、反応水を水約 10 mL で発砕し、つぎに大過剰のインプロプロノールでポリマーを沈殿させ、次に再沈殿を 2 回繰り返して精製し、減圧乾燥機中 50~60℃で乾燥した。同様に母体ポリマーについてもアミノウム塩を調製した。生成物はいずれも吸湿性の白色粉末である。

2-5 共重合組成およびエステル化度の決定

母体ポリマーおよびエステル化ポリマーの組成は、炭素、水素について元素分析を行ない、炭素分析値より計算して決定した。

2-6 粘度の測定

MEK および水溶液粘度は、Ostwald 型粘度計を用い、25 ± 0.05℃の恒温槽中で測定した。極限粘度 [η] は選元粘度 ηspl/η で濃度 0.05% を計算して求めた。

2-7 可溶化能の測定

ポリソープ水溶液 10 mL と約 0.1 g のイソオレフィンをガラス管に封入し、50 ± 0.5℃のサーモスタットに入れる。時々ふりまぜて 2 日間放置してから封じ、直ちにガラスフィルター 4 号で過剰の染料をふるいろ、水溶液に等容積のエタノールを加えて希釈し、これを K.A 型光電比色計 5 号のゲート（マキ製造所製）を用い、中心波長 450 μm で吸光度を測定した。

3 実験結果および考察

3-1 共重合組成

St と MA と母体ポリマーに関しては、すでに、重合機構について Alfrey たちに求めた理論的吸収率が、St と MA と

※1 1 章で示すマトリックスで 2 回再结晶して精製した。

の仕込みメルト組成が St/MA = 1 の時には共重合組成も St/MA = 1 を示すことが知られている。本実験で得られた母体ポリマーの共重合組成を表 1 に示す。この結果から、P-1, P-2 ともに St/MA = 1 であり、P-1 で特に著明に、これらの分解値は明らかであるので、別に検討することにし、一応 Alfrey らの結果にもとづき、St/MA = 1 として以下の実験を行なった。

表 1 母体ポリマーの重合条件

<table>
<thead>
<tr>
<th>試料番号</th>
<th>St (mol%)</th>
<th>MA (mol%)</th>
<th>BPO (mol%)</th>
<th>C6H5SH (g)</th>
<th>ベンゼン (ml)</th>
<th>重合温度 (℃)</th>
<th>重合時間 (hr)</th>
<th>共重合組成</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>52.0</td>
<td>49.0</td>
<td>0.5</td>
<td>100</td>
<td>70</td>
<td>9</td>
<td>69.32 (71.28)</td>
<td>0.835 (93)</td>
</tr>
<tr>
<td>P-2</td>
<td>72.0</td>
<td>49.0</td>
<td>0.5</td>
<td>2.5</td>
<td>100</td>
<td>70</td>
<td>70.57 (71.28)</td>
<td>0.937 (87)</td>
</tr>
</tbody>
</table>

* St/MA = 1 としたときの計算値
** 理論収率に対する相対効果の収率

表 2 母体ポリマーのエステル化

<table>
<thead>
<tr>
<th>試料番号</th>
<th>母体ポリマー</th>
<th>アクリル</th>
<th>St-MA/アクリル (mol%)</th>
<th>MEK (ml)</th>
<th>反応温度 (℃)</th>
<th>反応時間 (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A-12</td>
<td>P-1:10.00</td>
<td>C4:9.20</td>
<td>1:1</td>
<td>100</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>1 B-12</td>
<td>≈ 10.00</td>
<td>≈ 4.60</td>
<td>1:0.5</td>
<td>100</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>1 C-12</td>
<td>≈ 10.00</td>
<td>≈ 2.30</td>
<td>1:0.25</td>
<td>100</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>2 A-8</td>
<td>≈ 5.00</td>
<td>C4:3.22</td>
<td>1:1</td>
<td>100</td>
<td>80</td>
<td>12.5</td>
</tr>
<tr>
<td>2 B-8</td>
<td>≈ 5.00</td>
<td>≈ 1.61</td>
<td>1:0.5</td>
<td>100</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>2 C-8</td>
<td>≈ 5.00</td>
<td>≈ 0.81</td>
<td>1:0.25</td>
<td>100</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>2 A-12</td>
<td>P-2:5.00</td>
<td>C4:6.00</td>
<td>1:1</td>
<td>100</td>
<td>70</td>
<td>7</td>
</tr>
<tr>
<td>2 B-12</td>
<td>≈ 5.00</td>
<td>≈ 2.30</td>
<td>1:0.25</td>
<td>100</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>2 C-12</td>
<td>≈ 5.00</td>
<td>≈ 1.15</td>
<td>1:0.25</td>
<td>100</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>2 A-8</td>
<td>≈ 5.00</td>
<td>C4:3.22</td>
<td>1:1</td>
<td>100</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>2 B-8</td>
<td>≈ 5.00</td>
<td>≈ 1.61</td>
<td>1:0.5</td>
<td>100</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>2 C-8</td>
<td>≈ 5.00</td>
<td>≈ 0.81</td>
<td>1:0.25</td>
<td>100</td>
<td>80</td>
<td>8</td>
</tr>
</tbody>
</table>

a) ポリマーのメルト組成 St/MA = 1 としたときの MEK 収率に対する相対効果
b) 理論収率に対する相対効果

MA を共重合をあたえる組成を調製し、MEK 溶媒中、70℃で 8 時間反応させた結果、そして定常的になくなester 化が降りた。このように、MA に対して、メタクリルアルコール、メタアクリルアルコールを加え、MEK 溶媒中、70℃で 8 時間反応させた結果、ほとんど定常的にも濃縮エステル化が得られた。このことから、MA に対して、メタクリルアルコール、メタアクリルアルコール、メタアクリルアルコールを用いた共重合組成を決定した。
コールが極めてよい反応性を示すにもかかわらず、共重合体のMAユニットに対して割合に低い反応性を有するということは、共重合体のMAユニットに対しては立体因子の寄与が大きいためと考えられる。

つぎにエステル化ポリマーをアノニア水でケエン化したポリソープの構造を図1に示す。共重合体のMAユニットは、容易に水分解し、ただちにジカルボキシル基を生ずるが水には不溶である。しかし母体ポリマーのアノニア塩化物、および全てのポリソープは水に透明に溶解し、1A-8では31.3%のエステル化度を有するにもかかわらず、よい溶解性を示した。しかしながら、さらにエステル化度を増すと、遂にはHLBが水溶性にかたくな、次第に水溶性が減少して溶解性を失い、膨潤状態へと移行するものと考えられる。

3.3 溶液粘度

エステル化ポリマーのMEK溶液の濃度粘度と濃度Cとの関係を図2に示す。また表3には図2より求めた極限粘度[γ]、および二、三のHugginsのk'を示した。図2より母体ポリマーとエステル化ポリマーはともにγsp/CとCとの間には、ほぼ直線関係があり、P-2系では、n-ラウリンエステルは、すべてn-オクチンエステルより大きいγsp/Cを示し、同種エステル化ポリマーでは、エステル化度が高い順に大きなγsp/Cを有することがわかる。また、母体ポリマーP-1は、そのエステル化ポリマーとほぼ近似の[γ]を示すにもかかわらず、直線の勾配がエステル化ポリマーより大きいのが特異的である。P-2系では、エステルのアルキル基がC8の場合には、一定の関係は見出せない。これは、P-2がP-1に比較して著しく重合度が大きいため、この両者から導かれたエステル化ポリマーの間にはポリマー分子の溶存状態に若干差異を生することによると考えられる。P-1系では、アルキル基、エステル化度が大きいほど、とくに高いγsp/Cを示すことはアルキル炭素数が大きく、かつアルキル基の数が多いほどポリマー分子の親水性が増大し、ポリマー分子が一層伸長した構造をとるためと思われる。

つぎにポリソープ水溶液のγsp/CとCとの関係を図3(1)、図3(2)に示す。なおのののポリソープのγsp/Cを比較すると、さきに述べたMEK溶液粘度と異なり、アルキル基が大きく、またエステル化度が大きいほど小さい値を示すことがわかる。すなわち、図3(1)ではアルキル基がC8の粘度曲線は図中C12のそれの上部に位置し、テスタル化度の小さい1C-
8\(\cdot 10^{-2} \), 1B-8', 1C-12' はほっきりした極小値を \(C=0.5 \) 近くで示すが、エステル化度の大きさ 1A-8', 1A-12' では高濃度領域で横軸にはほぼ平行なだらかな曲線となって明白な極小値を示さない。このようなアルキル炭素数の増加、およびエステル化度の増大による \(\mu_{w} / C \) 低下の原因として、第一に、エステル化度の小さなトリソープは直接アルキルシアンオンの同種電荷間の圧力に基づいて、ポリマー分子が線状に延伸されるために大きい、粘度を示すが、エステル化度が大きくなるにしたがい、直接アルキルシアンオンの数が次第に減少して同種アニオン間の反発が小さくなる。またアルキル基の立体効果による同種アニオン間の電気的相互作用による圧力がさまたげられること。第二に、エステル化によって導入されたアルキル基間の van der Waals 力により、ポリマー分子が収縮する作用があること、などの効果によるものと思われる。中でもアルキル基の炭素数が高分子電解質特有の電気粘性効果に大きく影響していると考えられる。

図 3(2) では P-2', 2B-8', 2C-8', 2C-12' が低濃度で粘度上昇があり、2A-12', 2B-12', 2A-8' では逆に低下現象を示している。図 3(1) において P-1 系ではアルキル鎖長とエステル化度に対する \(\mu_{w} / C \) との関係を理解することができるが、P-2 系では一定の関係がないので十分な説明を与えることはできない。しかし低濃度におけるこのような異常現象は高分子電解質特有の構造粘性に起因するためであろう。

3.4 可溶化

ポリソープ水溶液のイエロー OB に対する可溶化量 \(K \) と濃度 \(C \) 関係を図 4 に示す。ポリソープは、いずれものかなり低濃度から可溶化を有し、\(K \) と \(C \) の関係には、ほぼ直線を連ねる直線関係があることがわかる。母体ポリマーでは P-1' が P-2' より大きな \(K \) を有し、P-1 系ではアルキル基の大きい \(C_{2} \) がエステル化度の大きい順に大きな \(K \) を示し、しかも、母体ポリマーである P-1' より大きな \(K \) を与えるが、P-1 系ではアルキル基の大きいほど母体ポリマーに近づくが、母体ポリマーより小さい。P-2 系では、いずれも \(K \) は母体ポリマーより大きく、アルキル基、エステル化度の増大にともなって増加する。

以上のことから、ポリソープのイエロー OB に対する可溶化は基本的にはつぎのように考えられる。すなわち、母体ポリマーのアノモニウム塩が可溶化能を有することから、染料はポリマーの極性基に吸着され、そしてエステル化の増大により可溶化量が増加する傾向から、さらにアルキル基に対する反発が活発になり、結果として極性基とアルキル基の二つの効果によって生じると考えられる。

図 4 ポリソープ水溶液のイエロー OB に対する \(K-C \) 関係

P-1' が P-2' に比較して \(K \) が約 10 倍ほど大きいのは、P-1' は P-2' より分子量が大きいため、水溶液の溶存状態が異なり、低分子量のものより染料を可溶化し易い形態をとることによると思われる。つぎに、母体ポリマーの分子量。アルキル鎖長。およびエステル化度と \(K \) との関係をみると、同じアルキル基の系列では \(K \) は P-1 系が P-2 系より大きく、エステル化度の大きさ C, B, A の順に増加する。また同じ母体ポリマー系ではアルキル基が大きく、かつエステル化度が高いほど大きくなる。しかし、1A-8', 1B-8', 1C-8' の \(K \) が母体ポリマー P-1' より小さいのが例外的に異常現象である。

以上のことから、ポリソープ水溶液によるイエロー OB の可溶化能はエステルのアルキル基。エステル化度、および母体ポリマーの重合度が大きいほど大きく、しかも、アルキル鎖長は可溶化に特に強く影響を及ぼすことがわかった。

昭和 36 年 11 月 10 日、日本油化学協会東海支部油酯討論会講演)

終に本研究の発表を許可された会社当局、ならびに御指導をいただいた名古屋大学工学部山下雅也助教授に対し深謝申上げます。