イミダゾリン型両性界面活性剤金属塩の合成
（昭和 40 年 6 月 28 日 受理）

丸茂 秀雄・高井 誠*

イミダゾリン型両性界面活性剤金属塩 36 種をそのナトリウム塩と無機金属塩との複分解によって合成した。水溶液の複分解では、両性両性界面活性剤のナトリウム塩の 2 個のカルボン酸が、1 個の金属塩に結合した中性塩の形の金属塩が得られたが、Ca, Ba などのアルカリ土類金属の場合には酸性塩に相当する金属塩が得られた。この場合の酸性塩では元素分析、電導度測定の結果から、2 個のカルボン酸が 1 個の金属塩に結合し、さらに 2 個の遊離のカルボン酸を存在していると考えられた。加水溶解の起こにくい系で複分解を行なった Ca, Ba 塩は中性塩の形をとるが、水中に溶けやすく酸性塩の形に変わった。

得られた金属塩は水に不溶で有機溶剤に可溶である。

1 緒言

第 1 報1) で示したように両性界面活性剤ナトリウム塩はプラスチックの外部用帯電防止剤として優れた帯電防止性を示すが、練り込んで使用する内部用帯電防止剤としては、第 2 報2) のように加工性 (Extradability), 熱安定性が良好で使用できない。著者たちは内部用帯電防止剤としての性能の欠点を解消するために、両性界面活性剤ナトリウム塩を、不溶性で油溶性と思われる金属塩の形に変えてプラスチックに対する相溶性と、熟安定性を向上して優れた実用性のある内部用帯電防止剤を作成しようと試みた。本報ではイミダゾリン型両性界面活性剤金属塩の合成について報告する。

2 結果および考察

本報では表 1 の両性界面活性剤の基本構造 XIII～XVI の各種の金属塩を合成した。XIII～XVI のナトリウム塩の合成は次のとおりであり、現在工業的に製造がなされている。XIII～XVI のナトリウム塩を水溶液で、本報の無機金属塩と複分解して各種の金属塩を沈殿させる方式を採用した。

* 本報を「帯電防止剤に関する研究 (第 3 報)」とする。
* Hideo MARUMO, Makoto TAKAI ライオン油脂株式会社研究所：東京都江戸川区平井。
1) 丸茂, 高井, 油化学 14, No. 10, 123 (1965).
イミダゾリン型両性界面活性剤金属塩の合成：丸茂・髙井

表 2 アルキルイミダゾリン

<table>
<thead>
<tr>
<th>金属塩</th>
<th>表面張力 (mN/m)</th>
<th>pH 4.4</th>
<th>pH 5.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIII-Mg</td>
<td>4.17</td>
<td>4.06</td>
<td>4.97</td>
</tr>
<tr>
<td>XIV</td>
<td>4.50</td>
<td>4.39</td>
<td>5.01</td>
</tr>
<tr>
<td>XV</td>
<td>4.12</td>
<td>4.00</td>
<td>4.92</td>
</tr>
<tr>
<td>XVI</td>
<td>4.01</td>
<td>3.90</td>
<td>4.81</td>
</tr>
</tbody>
</table>

表 3 イミダゾリン型両性界面活性剤金属塩

<table>
<thead>
<tr>
<th>金属塩</th>
<th>界面張力 (mN/m)</th>
<th>溶解度 (C)</th>
<th>溶解度 (mol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIII-Mg</td>
<td>4.17</td>
<td>4.06</td>
<td>4.97</td>
</tr>
<tr>
<td>XIV</td>
<td>4.50</td>
<td>4.39</td>
<td>5.01</td>
</tr>
<tr>
<td>XV</td>
<td>4.12</td>
<td>4.00</td>
<td>4.92</td>
</tr>
<tr>
<td>XVI</td>
<td>4.01</td>
<td>3.90</td>
<td>4.81</td>
</tr>
</tbody>
</table>

（185）

3）P. Ekwall, Kolloid-Z. 80, 77 (1937).
表 4 酸性塩の計算値

<table>
<thead>
<tr>
<th>化 合 物</th>
<th>Ca%</th>
<th>N%</th>
<th>R'COOH%</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R'COO]</td>
<td>2.38</td>
<td>6.24</td>
<td>48.80</td>
</tr>
<tr>
<td>[R'COO]</td>
<td>3.02</td>
<td>6.35</td>
<td>64.70</td>
</tr>
<tr>
<td>[R'COO]</td>
<td>4.66</td>
<td>6.25</td>
<td>47.82</td>
</tr>
</tbody>
</table>

表5にXVの金属塩の有機溶剤に対する溶解度を示す。これらの金属塩の洗浄水系法の溶剤に確実に溶解するので、ポリオレフィン系の樹脂に相溶性をもつと考えられる。Ca塩については毒性はわきわき検討されていない。実用上は無害と考えられている。

表 5 有機溶剤への溶解度

<table>
<thead>
<tr>
<th>溶剤</th>
<th>活性剤</th>
<th>溶解度（wt%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(30%)</td>
</tr>
<tr>
<td>メタノール</td>
<td>433</td>
<td>2.04</td>
</tr>
<tr>
<td>四塩化炭素</td>
<td>433</td>
<td>2.17</td>
</tr>
<tr>
<td>ベンゼン</td>
<td>433</td>
<td>3.38</td>
</tr>
<tr>
<td>ジオキサン</td>
<td>444</td>
<td>0.96</td>
</tr>
<tr>
<td>ジオキサン</td>
<td>444</td>
<td>2.14</td>
</tr>
</tbody>
</table>

3 実験

3-1 アルキルイミダゾリンの合成

三つロフラスコにカタログし、冷却管をつけた還流式の懸水管、温度計をつけた、高級脂肪酸（試薬1級）とアミノエチルエタノールアミン（Union Carbon & Carbbide Corp. 製品、bp 127°C/10 mmHg）をモル比1:0.1:1.2 とおり、全反応物重量の30%にあたるキシレンを加える。かきまぜながらフラスコヘーターで加熱すると、150°C付近で水、キシレンの蒸発がはじまる。生成する水分をキシレン還流で除いて、190°C付近まで温度をあげて、この温度で3時間還流反応を行う。体、2 mol の水分が排除されると、減圧下にキシレンを留去して、表2の粗製物を得る。粗製物は、さらに減圧蒸留を行なって、表2の後をとった。

3-2 アルキルイミダゾリンとモノクロル酢酸塩の反応

四つロフラスコにカタログし、冷却管、温度計、滴下漏斗をつけ、1 mol のアルキルイミダゾリン（表2）をとり、別に20°C以下でモノクロル酢酸をカセイソーダで中和したモノクロル酢酸ナトリウム1.1 mol の20%水溶液、カセイソーダ1.1 mol の20%水溶液を合わせており、あかじめアルキルイミダゾリンの5倍量の水を加えておいて、40°Cで滴下漏斗から15分を要して添加する。90～98°Cに昇温して5時間かきませる。pH は12から0付近になり、透明液状の反応物がえられる。水溶液での不溶解ではさらに5%水溶液として、蒸発系での不溶解では蒸発乾固して粉末として反応に使用した。

3-3 複分解

3-3-1 水溶液での反応

四つロフラスコにカタログし、温度

計、冷却器、滴下漏斗をつけて、両性界面活性剤ナトリウム塩1 mol を5%水溶液としてとる。別に両性界面活性剤のカルボン酸塩を1個と1個の金属根と結合するした計量の50%過剰の無機金属塩の5%水溶液をつくり、両者を80°Cに加温して10分を要してかきませながら反応する。この温度で30分かきませる。沈殿を通過後、ろ製上で清澄水で2回反応し、80°Cの熱風乾燥器で24時間、減圧乾燥器で10時間乾燥する。乾燥品をベンゼンで2回脱塩を行なう。無機金属塩はすべて1級試薬の塩化物を使用した。再結晶では塩酸塩、カルシウム塩では塩酸塩を用いてい。なおC17H33, C17H35のアルキル基をもつの場合は何過もあるが、反応は容易に進む。ベンゼンで可溶分を抽出して、表3のNo.424, 444を得た。

3-4 分析方法

3-4-1 元素分析 Nはセミクロカルデール法により、金属は次の方策によってわけた。（次ページ）
(1) Fe, Cu, Sn, Mn: ルツボで各金属塩を焼、硫酸、硝酸とともに加熱した後、電気炉で焼いて Fe₃O₄, CuO, SnO₂。MnO として重量分析を行なった。
(2) Al, Ni: オキシリンによる重量分析法による。
(3) Co: α-ナシトロン-β-ナフタールによる重量分析法による。
(4) Mg, Zn, Cd: EDTA 直接滴定法による。試料 30～100 mg を 200 ml のビーカーに精密して、6 N の硝酸 60 ml を滴下して完全に溶解した後、80 ml の水を加えて、6 N カセイソーダで pH 9～10 とする。つぎに NH₄-NH₄Cl 酸衡溶液 (pH 10) 2 ml、および EBT 指示薬 3～5 滴を加えて 0.01 mol/l EDTA 標準溶液で滴定する。
(5) Ca, Ba, Pb: Mg-EDTA 置換滴定法によった。すなわち試料 30～100 mg を 200 ml ビーカーに精密し、6 N 硝酸 10 ml を加え溶解した後、水 80 ml を加える。6 N カセイソーダで pH 9～10 に調節し、NH₄-NH₄Cl 酸衡液 (pH 10) 2 ml、0.1 mol/l, Mg-EDTA 水溶液 1 ml および EBT 指示薬 3～5 滴加えて 0.01 mol/l EDTA 標準溶液で滴定する。
3.4.2 電導度滴定。電導度滴定は BU-103 B 型交流万能はず（横河電機株式会社製）の白金電極（1 cm², 離隔 2 cm）を使用して、次の操作で行なった。約 0.1 g の No. 433, 444 を精密して 300 ml ビーカーにとり、中和したイソプロピルアルコール 100 ml に溶解する。電磁石細く加え、0.01 N カセイソーダ・イソプロピルアルコール溶液 (f = 0.9594) で滴定したが、比電導度をテレホンの音の最小から求めた。図 1, 図 2 を得た。
3.4.3 IR スペクトル IR-S 型型記赤外分光光度計（日本分光工業（株）製）による IR スペクトルを図 3 に示した。1620 ～1650 cm⁻¹ に \(\gamma =N-CH₆ \), 1540～1580 cm⁻¹ に \(-CH₂OOC, 1050 cm⁻¹ に \(-CH₂OH の吸収が確認された。1650～1690 cm⁻¹ の
-CONH– の吸収はない。
3.5 溶解度測定法
試料 3 g を 100 ml の三角フラスコにとり、溶剤 10 ml を加えて温浴上で 20 分ふる。15 分静置後、上澄液を前もって秤量した船底形のガラス容器（図 4）に、スポイドでとり、約 2

図 4 溶解度測定用ガラス容器