2-置換-2-オキサゾリン類の重合反応

（昭和40年9月29日受理）

鈴谷 勤・成沢静夫・前田種雄・福井謙一*1

N-アシルエチレンイミンの異性化反応によって合成した2-メチル-、2-フェニル-、および2-イソプロペンール-2-オキサゾリンなどの2-置換-2-オキサゾリン類の重合を各種触媒を用いて行った。触媒反応を用いると、これらモノマーのオキサゾリン環は1-5結合、すなわち酸素-炭素結合間で開裂し、2-メチルおよび2-フェニル-2-オキサゾリンからN-アシル置換ポリエチレンイミシンの生成を示す。一方、2-メチル-2-オキサゾリンはジオキサン触媒では重合しない。2-イソプロペンール-2-オキサゾリンは触媒あるいはラジカル開始剤によってイソプロペンル基が重合し、金属にオキサゾリン環を有するポリマーが生成する。また、ジオキサン触媒を用いた場合にはビニル開裂およびオキサゾリン環の開環重合が同時に起こり、架橋ポリマーが生成する。

1 緒 言

2-オキサゾリン類の反応および加水分解による開環反応については、多くの研究がなされている。

2 実験の部

2-1 モノマー

2-1-1 N-アシルエチレンイミンの合成

（a）N-アセチルエチレンイミン

攪拌器、温度計ならびに油下漏斗を付随した11の三つロフラスコに、400 ml の無水エチルエーテルに0.5 moleのエチレンイミンおよび0.5 moleのトリエチルアミンを溶解された溶液を加える。これを30℃で冷却下にかきませながら、0.5 moleのアセチルクロリドを含む無水エチルエーテル300 mlを滴下する。滴下終了後、さらに室温で1時間かきませ、生成したトリエチルアミン塩酸塩を別にし、エチルエーテルを洗って残るN-アセチルエチレンイミシンを減圧蒸留して再蒸留する。収率44.2%。

bp 41.5～43.5℃/20.2 mmHg, nD 1.4369（文献値：bp 38～39℃/17 mmHg, nD 1.4378）

実測値 C 55.93%, H 8.46%, N 16.78%。

C6H7NOの計算値 C 56.45%, H 8.29%, N 16.46%。

（b）N-メタクリルエチレンイミン

減圧蒸留を行う際、ヒドロキシル1.5 g を加えたものをN-アセチルエチレンイミンの場合と同様にして合成した。収率54.3%。

bp 48.0～49.0℃/11 mmHg, nD 1.4690（文献値：bp 49.5～50.5℃/12 mmHg）

実測値 C 65.05%, H 8.24%, N 12.47%。

C6H7NOの計算値 C 64.84%, H 8.16%, N 12.60%。

（c）N-ベンゾイルエチレンイミン

攪拌器、温度計ならびに油下漏斗を付随した500 ml の三つロフラスコに、300 ml の水にエチレンイミン0.3 moleおよび当mol量のカセイソーダを溶解させた溶液を入れる。水冷でかきませながら、10℃以下でベンゾイルクロリド0.3 moleを滴下し、滴下終了後さらに1時間かきませを続ける。反応物にエチルエーテル100 mlを加える抽出操作を3回行ない、使用したエーテルに水100 ml を加える洗浄を3回行なう。この水洗エーテルに無水ポルフィリオンを加えて乾燥後、エーテルを留去する。残るN-ベンゾイルエチレンイミシンを減圧蒸留して再蒸留する。収率50.3%。

bp 80.5～82.0℃/4.5 mmHg, nD 1.5583

実測値 C 73.01%, H 6.37%, N 10.00%。

C6H7NOの計算値 C 73.45%, H 6.16%, N 9.52%。

2-1-2 2-置換-2-オキサゾリンの合成

（a）2-メチル-2-オキサゾリン

還流冷却管を付随したフラークコにN-アセチルエチレンイミン50.5 g、n-ヘキサン100 ml ならびにヨウ化ナトリウム0.89 g を入れ、70℃で7時間加熱した。その後、n-ヘキサンを留去し、残分を減圧蒸留し再蒸留して得た。収量33.9 g (67.1%)。

実測値 C 56.21%, H 8.32%, N 16.39%。

C6H7NOの計算値 C 56.45%, H 8.29%, N 16.46%。

N-メチル-2-オキサゾリン

還流冷却管を付随したフラークコにN-アセチルエチレンイミン50.5 g、n-ヘキサン100 ml ならびにヨウ化ナトリウム0.89 g を入れ、70℃で7時間加熱した。その後、n-ヘキサンを留去し、残分を減圧蒸留し再蒸留して得た。収量33.9 g (67.1%)。

実測値 C 56.21%, H 8.32%, N 16.39%。

C6H7NOの計算値 C 56.45%, H 8.29%, N 16.46%。

10) U. S. P., 2,830,045 (1958)。

*1 Tsutomu KAGIYA, Shizuo NARISAWA, Taneo MAEDA, Kenichi FUKUI 京都大学工学部燃料化学科 京都市左京区吉田、

このモノマーの赤外線スペクトルにおける 1680 cm⁻¹ の吸収は
2-オキサゾリン型の C-N 伸縮振動に帰属される。（b）2-フェニル-2-オキサゾリン N-ベンゾイルエチレンイ
ミン 32.6 g, n-ヘキサン 20 ml ならびにヨウ化ナトリウム 0.34 g をガラス封管に入れて、70°C にて 10 時間加熱して異性化反応を行なった。収率 23.9 g (73.3%)。

bp 75.5~78.2°C/2 mmHg, nD²⁰ 1.5640 (文献値：bp 246~248°C, 242~243°C)。

実測値 C 73.15%, H 6.14%, N 9.46%
C₆H₄NO としての計算値 C 73.45%, H 6.16%, N 9.52%

このモノマーにおける C-N 伸縮振動は 1653 cm⁻¹ に認められる。

(e) 2-イソプロペンネール-2-オキサゾリン N-メタクリロイルエチレンイミン 13.7 g, n-ヘキサン 10 ml, ヨウ化ナトリウム 0.19 g ならびにヒドロキシノン 0.13 g をガラス封管に入れて、70°C で 10 時間加熱して異性化反応を行なった。収量 9.43 g (68.8%)。

bp 50.5°C/17.5 mmHg, nD²⁰ 1.4749

実測値 C 65.48%, H 8.28%, N 12.95%
C₅H₇NO としての計算値 C 64.84%, H 8.16%, N 12.60%

このモノマーにおける C-N 伸縮振動は 1660 cm⁻¹ に、また 1615 cm⁻¹ に C-C 伸縮振動が認められる。

これら 2-置換-2-オキサゾリンの赤外線スペクトルを図1に示す。

2-2 触媒。溶媒ならびに重合方法
触媒 (C₈H₈)₂N-HI はトリエチアルミニと 57% HI より合成し、アセトン-エチルエーテル混合溶媒で再結晶して用いた。

SnCl₄ および BF₃·O(C₂H₅)₂ は市販品を蒸留して用いた。その他の触媒は市販品をそのまま用いた。

溶媒 市販品を常法により精製して用いた。

重合方法 室温置換した硬質ガラス封管（内径 6 mm）にモノ
マーを入れ、ドライアイルスタノール溶浴に冷却し溶解を加えて
封じた。重合は常圧で行った。生成ポリマーはアルコールに
溶かして取り出し、エチルエーテルで再沈させて分離後減圧乾燥した。

2-3 生成ポリマーの物性
融点 室温置換したキャビラリー中で測定した。
粘度 35°C における粘度をまたはジェチルホルムアミド溶液
の粘度をペレーロ度粘度計を用いて測定し、還元粘度 (ηspg) を
求めた。

赤外線スペクトル 日本電子製 JNM-C-60 型（60 Mc）核磁気
共鳴測定装置を用い、90°C における 99% ガラスの 5% 溶液を
測定した。

NMR スペクトル 日本電子製 JNM-C-60 型（60 Mc）核磁気
共鳴測定装置を用い、KBr 鉱剤法によって測定した。

2-4 生成ポリマーの加水分解とアセチル化反応
2-2-メチル-2-オキサゾリンのポリマーは、70°C において SnCl₄
触媒によるアセチルエチル溶浴重合によって合成した。

白色粉末、mp 160~170°C, ηspg 0.2 (水, 1.13 g/dl, 35°C),
このポリマー 3.3 g を 20% 酸液 15 ml に溶かし、封管中 110
°C で 15 時間加熱して加水分解した。反応後減圧乾燥し、水
を加えてさらに減圧乾燥を 3 回くり返した。これを水に溶かし、弱
塩基性イオン交換樹脂 Dowex を通じた後減圧乾燥して固体ポリ
マー 1.7 g を得た。mp 60~70°C, ηspg 0.35 (水, 1.41 g/dl, 35°C).

この加水分解物をおいて、2-メチル-2-オキサゾリンのポリマー
の赤外線スペクトルに存在する 1630 cm⁻¹ の第三アミド C=O 伸
縮振動がほとんど消失している。

実測値 C 36.96%, H 9.03%, N 21.06%
-CH₃CH₂NH₃²⁺ CH₃CH₂NH₃⁻1.4 (H₂O)₄, としての計算値
C₈H₁₄O
C 36.98%, H 9.78%, N 21.06%

また、更に方法で得た加水分解物 0.99 g を水酢酸 10 ml と
水 10 ml の混合液に溶解させ、無水酢酸 50 ml を加えて 80~90
°C で 1 時間反応させた。反応物を減圧乾燥し水中に溶解し、イオン
交換樹脂 Dowex を通じた後に減圧乾燥すると固体ポリ
マー 0.92 g を得た。mp 90~100°C, ηspg 0.19 (水, 0.86 g/dl, 35°C)

実測値 C 44.11%, H 10.58%, N 16.95%
CH₃CH₂NH₃²⁺ CH₃CH₂NH₃⁻1.4 (H₂O)₄, としての計算値
COCH₃
C 44.19%, H 9.77%, N 16.99%

このアセチル化物の赤外線スペクトルは加水分解物のものにほ
ぼ類似し、1630 cm⁻¹ の第三アミド C=O 伸縮振動が強く現われ
た。このことから、生成ポリマーの構造は N-アセチルポリエチ
レンイミンであると考えられる。

12) S. Gabriel, T. Heymann, Ber., 23, 2493 (1890).
13) 桑田, "溶剤", 南京 (1940).
3 実験結果と考察

3.1 2-メチル-2-オキサリンの開環-閉合反応
2-メチル-2-オキサリンの重合を塊状および溶液で行なった結果を表1、2および3に示す。
2-メチル-2-オキサリンを無触媒で150°C、30時間加熱しても再び重合体は得られなかった。しかし、SnCl4を1 mol%加えると150°C、2時間で定量的に重合し、70°C、30時間で約40%程度の重合体が得られた。また、一般にジアセチル触媒で重合活性が認められたが、アセチル触媒を用いると全く重合体は得られなかった。また、表3の結果のように、トルエン溶液を用いた場合よりもアセチルトリオキサリン溶液を用いた場合の重合収率は大である。

表1 SnCl4触媒による2-メチル-2-オキサリンの重合

<table>
<thead>
<tr>
<th>実験番号</th>
<th>液相</th>
<th>取率(%)</th>
<th>重合収率</th>
<th>時間</th>
<th>波数(cm⁻¹)</th>
<th>空間(λ)</th>
<th>重合度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

表2 各種触媒による2-メチル-2-オキサリンの重合

<table>
<thead>
<tr>
<th>実験番号</th>
<th>液相</th>
<th>取率(%)</th>
<th>重合収率</th>
<th>時間</th>
<th>波数(cm⁻¹)</th>
<th>空間(λ)</th>
<th>重合度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

表3 2-メチル-2-オキサリン溶液重合

<table>
<thead>
<tr>
<th>実験番号</th>
<th>液相</th>
<th>取率(%)</th>
<th>重合収率</th>
<th>時間</th>
<th>波数(cm⁻¹)</th>
<th>空間(λ)</th>
<th>重合度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

参考文献
1. SnCl4触媒による2-メチル-2-オキサリンの重合
2. 各種触媒による2-メチル-2-オキサリンの重合
3. 2-メチル-2-オキサリン溶液重合
表4 2-フェニル-2-オキサリンの重合
モノマー：1-3 g、濃度：1 mol%，温度：70℃、模状重合

<table>
<thead>
<tr>
<th>実験番号</th>
<th>物質</th>
<th>時間 (hr)</th>
<th>反応 (%)</th>
<th>重合度 (g/mol)</th>
<th>確定点 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>無触媒</td>
<td>50</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>SnCl4</td>
<td>50</td>
<td>28.6</td>
<td>0.05</td>
<td>100-110</td>
</tr>
<tr>
<td>27</td>
<td>BF3+O(C2H5)2</td>
<td>30</td>
<td>47.2</td>
<td>0.10</td>
<td>100-110</td>
</tr>
<tr>
<td>28</td>
<td>Al(C2H5)3Cl</td>
<td>50</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>(C2H5)3NH2</td>
<td>50</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a) ジメチルメチルアミド、0.8-1.0 g/dl、35℃

図4 2-フェニル-2-オキサリン重合体（実験番号27）の赤外線スペクトル

図4に示す。なお、1560 cm⁻¹に3級アミドの C=O 伸縮振動が認められ、これは両者を含む N-ニトロソニルquestion mark : 合成体とLiClからのLiClが混在していることである。Jonesら(14)の結果と一致した。しかしその両者は同

3-3 2-イソプロペニル-2-オキサリンの重合反応
ラジカル開始剤および触媒反応による2-イソプロペニル-
2-オキサリンの重合結果を図5に示す。

図5 2-イソプロピル-2-オキサリン重合体の赤外線
スペクトル
(1) ABIN触媒（実験番号32）、(2) BF3+O(C2H5)2触媒（実験番号34）
にオキサリン環のC=N伸縮振動の吸収が認められ、イソプロ
ペニル基の重合によって、側鎖にオキサリン環を有する構造体

2-イソプロピル-2-オキサリンを無触媒で70℃に加熱すると
ポリマーが得られた、ラジカル停止剤としてフェニル-8-
ナンチルアミンを添加すると重合は禁止された。また、ラジカル
開始剤を添加すると好収率で白色粉末ポリマーが生成した。このも
のはジメチルメチルアミド、アソール、クロロホルムに可溶で、
エチレングリコール、アセトソノールに不溶であった。そ
は、カチオン触媒
による重合ラジカル停止剤の存在下に行なったものである。生成ポリマー
は緩衝を示せず、ジメチルメチルアミドにも不溶であった。これ
は、カチオン触媒を用いた場合にはオキサリン環が開環し、重
合と共に架橋反応も起こったことを示すものと考えられる。

これらのポリマーの赤外線スペクトルを図5に示す。すなわ
ち、無触媒およびラジカル開始剤によるポリマーには、1565 cm⁻¹
の吸収が認められた。これに対してカチオン触媒によるポリ
マーは、1650 cm⁻¹の吸収が1630 cm⁻¹に移動することが観察さ
れた。これはオキサリン環の開環反応による第三アミドの C=O 伸
縮振動に基づく吸収が現れたためと考えられる。

3-4 2-置換-2-オキサリンの開環重合反応
2-置換-2-オキサリンは、反応条件によって1-2 結合、2-3 結
合ならびに、1-5 結合で開環することが知られている。カルボン
酸とN-オキサリンの開環反応(15)、塩化水素との反応(16)、および塩酸塩の塩酸塩中での
開環反応(17) などは1-5 結合で開環する。また、向山ら(18)は、カ
チオン触媒による2-フェニルイミノ-1,3-オキサリンの重合
の際、生成ポリマーにはポリ(イミノ-N-フェニル尿素)構造体
と、その互変異性体の2-アミノ-1,3-オキサリンの開環反応
によって、開環に尿素結合を有するポリイミノペンゼンが含まれ
ると報告している。2-メチル-2-オキサリンおよび2-フェニル
2-オキサリンがカチオン触媒で開環重合しN-アミルポリイミ
ノペンゼンを生成する場合も、これからも、触媒の機構によるも
のと考えられる。
2-イソプロペニール-2-オキサゾリンは、ラジカル開始剤の存在下に選択的にイソプロペニール基が重合し、側鎖にオキサゾリン環を持つポリマーを生成する。また、カチオン触媒を用いた場合には、さらにオキサゾリン環も閉環し、架橋がおこると考えられる。

(1965年4月，日本化学会第18年会一部発表)
本研究を行うにあたり、NMRスペクトルは名古屋大学工学部 山本隆雄教授のご厚意により行われた。ここに深く感謝申し上げます。

硝酸銀水溶液中におけるイソブレンの放射線重合
(昭和40年10月6日受理)
藤岡修二*1, 市村忠男*1, 濱田康夫*1, 林晃一郎**

イソブレン，硝酸銀は混合比のいかんにかかわらず水相において1対2の錯合体を形成し，このものは活性種の攻撃で重合し，その重合過程において錯合体を形成していたAg⁺は離脱する。この錯合体は吸光光度的に確認され，その平衡定数（K）は0.18，吸光係数（ε）は1.4である。ラジカル型凝集重合の存在下で重合が停止されることから，ラジカル機構で重合が進行するものと思われる。

生成ポリマーは不溶不融で，赤外吸収スペクトルより，ポリマーのミクロ構造として1,2-結合の割合が他のポリイソブレンにくらべて多く，このことと重合機構との関連性を考察した。

1 緒 言

イソブレンの重合の最近の新しい方法として，Ag⁺塩の水溶液中でのラジカル重合があり，触媒法ではBierら①が，放射線重合法ではRosingerら②が報告している。両方法を通じてあるとすることは，重合速度が非常に速く，放射線重合法ではG-位は10万分の1にも達する。この際の重合機構としては，水溶液中でエチレンと水素イオンが1対1に付加し錯合体を形成し，このものが重合するとしている。エチレンが数多くの金属イオンと錯合体を作ることはよく知られているが，ここで拡張してAg⁺に関しては既に大沢ら③が，アルカリ金属イオンに関しては既に大沢ら④が，AgNO₃存在下で放射線重合を試みている。したがって，この際の重合機構としては，水溶液中でエチレンとAg⁺は分子間の桶かけ型錯合体を形成しているとして報告しているが，このことは非常に興味深い。

このように重合時にモノマー——金属イオン，あるいはモノマー——モノマー間で錯合体を作ることを重合させるという方法は学問的にみても非常に興味あるものである。著者ら⑤は

液体窒素温度とスツメエン，アリルアセタートの共重合を行い，この際にもモノマー——モノマー間の錯合体を形成し，このものが重合に関与すると推定した。

今回モノマーとしてイソブレン，金属塩として硝酸銀を選んでその放射線重合を試み，二，三の知見を得たので以下において報告する。

2 実 験

2-1 重合操作

硝酸銀は特級試薬をそのまま使用し，イソブレンはウィートナー精製塔で精製したものを使用した。

重合操作は次のように行なった。所定温度の硝酸塩水溶液をL字型アンプルに入れ，所定量のイソブレンを加え水を全容を15mLとした。この時のL字型アンプルを使用したのは，冷却，脱気の際に水溶液の固相製剤によりアンプルが破損しないようにするためである。このL字型アンプルを真空ラインに接続し液体窒素の温度まで冷却し，脱気，溶解を2回くりかえし10⁻²mmHg以下の真空中でアンプルを封管した。その後，アンプルを所定温度に保った恒温槽中で所定時間照射し重合させた。重合終了後直ちにアンプルを開封し，水洗により十分硝酸銀を除去し乾燥秤量した。

線量率は鋼（Ⅱ）塩ドミテリーで行なった。

2-2 ポリマーの分析

ポリマー中には一部硝酸塩が含まれているので，その含有量を定量し重合収率は純ポリイソブレンの形で求めた。硝酸塩の定量方法は次のとおりである。まず水洗乾燥したポリマーを完全燃焼させ，その後5N硝酸10mLで燃焼残分を溶解させ，水で希釈し過剰の食塩飽和溶液を加へ塩化銀を沈殿させる。沈殿した塩化銀の量よりポリマー中の銀含有率を算出した。

2-3 光学的実験

イソブレン-硝酸銀水溶液の吸収スペクトルは，日立製自記分光光度計

*1 Syuji FUJOKA, Tadao ICHIMURA, Yadwo SHINOHARA
東洋レヨン株式会社研究部：大阪市中央区

*2 Koichiro HAYASHI
京都大学工学部高分子科学科：京都府京都市左京区

4) 大和，林，同村，福井研年報，2, 95 (1960).
5) 住友，小林，八木，工業，67, 1599 (1964).
6) 山下，古川，三枝，川崎，工業，65, 239 (1962).