酢酸ビニルのラジカル重合におよぼすアニュリンおよびフェノール誘導体の置換基効果*1

（昭和43年3月21日受理）

寒川誠二*2・古川淳二*3・山下晋三*4

アニュリン、およびフェノール誘導体のラジカル重合反応における各種酸化防止剤、および類似化合物のラジカル重合阻止効率を測定し、既報の酢酸ビニルに対して得られた結果と比較、検討した。その結果、供試添加剤について単純 LCAO-MO 法で計算したラジカル反応、および生成ラジカル形成のそれぞれ反応性指数とラジカル重合阻止効率との関係は、モノマー種の差とは無関係に同じ傾向を示すことが明らかになった。また供試添加剤のラジカル重合阻止効率はフェニルモノマーの反応性を支配する二因子のうち、極性項よりも共鳴項によって大きく影響されることがわかった。そして共鳴因子（Q 値）が 0 に近いモノマーに対しては酸化電位で 0.4 V 付近のフェニル系化合物が、また Q 値が 1.0 付近のモノマーに対しては酸化電位で 0.8 V 付近のフェノール系化合物がラジカル重合阻止に対して有効に作用することを見出した。

（1967年5月、日本ゴム協会第34回研究発表会講演（京都））

酢酸ビニルのラジカル重合におよぼすアニュリンおよびフェノール誘導体の置換基効果*1

（昭和43年3月21日受頒）

寒川 誠二*2・古川 淳二*3・山下 晋三*4

アニュリン系、およびフェノール系の酸化防止剤を含む約 30 種の核置換導体について、酢酸ビニルのラジカル重合阻止効果を測定し、それらの結果と単純 LCAO-MO 法から計算したそれぞれの誘導体のラジカル反応性指数との間に得られる直線関係を利用して、ラジカル反応性に関するアニュリン、およびフェノール誘導体の置換基導体（μ）を計算した。その結果、μ 値が増大するとそれら化合物の酢酸ビニル重合ラジカルに対する反応性が増加することがわかった。さらに μ 値はスチレンの核置換導体のラジカルに対する相対反応性（1/μ）とほぼパラレルな関係にあったことがわかった。また、スチレンの核置換導体の共重合反応に対する共鳴項 Q 値に対しては、ほぼパラレルな関係にあることを認めた。したがって、酸化防止剤の酢酸ビニルのラジカル重合に対する阻止能、つまり酸化防止能は酸化防止剤自身の共役系が強いほど、したがって、それから生じたラジカルが共鳴安定化しやすいほど、高くなることがわかった。

1 結 言

ある化合物のラジカル反応性は、単純 LCAO-MO 法によれば式（1）にしたがって計算できる。この関係は、

\[ S_{k} = \frac{\sigma_{k}}{2} \left( \frac{C_{k}^{1/2}}{\lambda_{k}} \right) + \frac{\sigma_{k}}{2} \left( \frac{C_{k}^{1/2}}{-\lambda_{k}} \right) \]  

（1）

しかし、この計算過程は主に高度な分子構造を必要とするため、簡単な近似にすぎない。また、結果論的には、ラジカル反応性の大小を論ずることができても、ラジカル反応性を向上させるための化合物構造の要因に一定の指標を与えることは、現在のところ困難である。したがって、ラジカル反応性指数は古典的なメタノの置換基導体の μ のような、化学的直観性からみて定義が容易に乏しいように思われる。

酸化防止効果に対する置換基の影響については、Rosenwald および Wason が、Boozer および Pedersen が、Hudenburg が、Howard が、Ingold および Lloyd によって古くから詳細に検討されており、置換基のメチル基の酸化防止能との間には直線関係のあることが示されている。そして置換基の酸素供与性の高い化合物の酸化防止能は大きく、反対に電子吸引性の置換基は酸化防止能を低下させるという。

酸化防止効果に対する置換基のイオン的な寄与については、このように示唆されているわけであるが、本質的にはラジカル機構で進むとされている高分子化合物の酸化防止、およびその防止に対し置換基のラジカル的寄与に関しては、いまだか

2 方 法

AIBN を開始剤とする酢酸ビニルのラジカル重合速度におよぼすアミン系、ならびにフェノール系の酸化防止剤を含む計 113 種の化合物の影響についてはすでに報告した 15－17）。本報では、そのさいに得られた重合曲線のうち、抑制剤型の挙動を示すアミン、およびフェノールの核置換体約 30 種について検討を行なった。

ラジカル重合の抑制効果としては、図 1 にみられるように、45.90 ± 0.02°C において酢酸ビニルが 5% 重合する後に要する空試験からの遅延時間（AT）をもって表した。ラジカル重合遅延時（AT）と、先に求めたラジカル重合阻止効果（k1/k2α）との関係は図 2 にみられるように直線関係を示しているので、操作的に簡便な AT を採用した。

3 結果、および考察

3-1 フェノール誘導体のラジカル反応性に対する置換基効果

フェノールの核メチル置換体の酢酸ビニルのラジカル重合遅延効果と、ラジカル反応性指数との関係を対比すると図 3 が得られた。本図からわかるように、メチル基の数が増加するほど、ラジカル重合遅延効果は増加し、また、オルト位置換体はパラ位置換体よりも効果が大きいことがわかる。しかも遅延効果 AT とラジカル反応性指数の間には良好な直線関係が存在する。

図 3 において、各フェノール誘導体間の反応性指数の差を比較すると、オルト位、およびパラ位のメチル置換基の数による加成性が、ほぼ成立していることが観察される。たとえば、2 種のフェノール誘導体の反応性指数の差を AT とおくと、フェノール (β-OH) とオルトクレンゾール (o-CH3-β-OH) との場合には、式 (2) のように、この差はオルト位にメチル基 1 個が導入されたことによるラジカル反応性の増加分を意味する。

\[ M = (o-CH_3 - β-OH) = \beta - (o-CH_3) \]  (2)

次に、パラクレンゾール (p-CH3-β-OH) と 2,4,6-トリメチルフェノール (2,4,6-(CH3)3-β-OH) の場合には式 (3) が得られた。

\[ M = (2,4,6-CH_3)_2 - β - OH = p - (2,4,6-CH_3) \]  (3)

この値はオルト位に 2 個のメチル基が導入されたことによるラジカル反応性の増加分であり、丁度式 (2) で得られた値の 2 倍に相当している。また、パラ位のメチル基については式 (4) に示すように示すことができる。

\[ M = (p-CH_3 - β-OH) = 0.160 = (p-CH_3) \]  (4)

15) 古川栄二、山下善三、寒川誠二、工化、71, 1892 (1968).
16) 寒川誠二、古川栄二、山下善三、工化、71, 1897 (1968).
17) 寒川誠二、古川栄二、山下善三、工化、71, 1900 (1968).
一方、2,4,6-トリメチルフェノールとフェノールについては式（5）が得られた。

\[ Dl(2,4,6-(CH_3)_3-\phi-\phi-\phi) = 0.550 = (p-CH_3 + o-CH_3 \times 2) \]  

この値はオルト位に2個、パラ位に1個のメチル基が入ったことによるラジカル反応性の増加分にほかならないが、この値は式（3）と式（4）との和、すなわち0.560とわめてよく一致する。

そこで図3中の化合物についてすべての組合せにより、オルト位、およびパラ位のメチル置換基によるラジカル反応性の増加分を求めて平均すると、それぞれ222、および0.158なる値が得られた。いま置換フェノールに0.000なる値を仮定して、これを基準として供試フェノール誘導体すべてについて同様な操作を行なって得られた数値をまとめて表1のようになった。この値を \( \mu_{PH} \) とおく、フェノール核置換体のラジカル反応性に対する置換基定数を定義する。

<table>
<thead>
<tr>
<th>置換基</th>
<th>( \mu_{PH} )</th>
<th>置換基</th>
<th>( \mu_{PH} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.000</td>
<td>p-CH_3</td>
<td>0.357</td>
</tr>
<tr>
<td>p-CH_3</td>
<td>0.158</td>
<td>o-iso-CH_3</td>
<td>0.503</td>
</tr>
<tr>
<td>o-CH_3</td>
<td>0.222</td>
<td>p-OH</td>
<td>0.774</td>
</tr>
<tr>
<td>p-tert-C_6H_4</td>
<td>0.232</td>
<td>o-CH</td>
<td>0.943</td>
</tr>
<tr>
<td>o-tert-C_6H_4</td>
<td>0.272</td>
<td>p-NH_2</td>
<td>1.269</td>
</tr>
<tr>
<td>m-OH</td>
<td>0.311</td>
<td>o-NH_2</td>
<td>1.269</td>
</tr>
<tr>
<td>o-CH_2O</td>
<td>0.321</td>
<td>p-NO_2</td>
<td>1.825</td>
</tr>
</tbody>
</table>

この置換基定数は算出の過程からもわかるように単純LCAO-MO法により計算したラジカル反応性のほかに、立体障害効果なども含めた実際のラジカル反応性も組み合わされた値である。

図4は表1の値とそれぞれの置換基をもつフェノール系化合物のラジカル重合関連効果（\( Dl \)）との関係をプロットしたもので、良好な比例関係が両者の間に成立することがわかる。したがって、ある化合物について酰酸ビニルのラジカル重合における遷移効果（\( Dl \)）さえ判明すれば、ラジカル反応性指数（\( S_r \)）が不明であっても、ラジカル反応に対する置換基定数（\( \mu \)）を求めることができる。図4から\( \mu \)と\( Dl \)との関には式（6）の関係がある。

\[ \mu = 0.075 \times Dl \]

3-2 アミノ系のラジカル反応に対する置換基効果

アミノの核置換誘導体については、すでに\( Dl \)が求められているので、式（6）を利用して\( \mu \)を計算できる。得られた値を表2に示した。これがアミノの核置換誘導体のラジカル反応に対する置換基定数（\( \mu_{AN} \)）である。

<table>
<thead>
<tr>
<th>置換基</th>
<th>( \mu_{AN} )</th>
<th>置換基</th>
<th>( \mu_{AN} )</th>
<th>置換基</th>
<th>( \mu_{AN} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.000</td>
<td>p-NH_2</td>
<td>1.353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-N(C_6H_5)_2</td>
<td>0.061</td>
<td>p-OH</td>
<td>1.458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Br</td>
<td>0.225</td>
<td>p-CHO</td>
<td>1.482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-C_6H_4</td>
<td>0.450</td>
<td>p-NH_2</td>
<td>2.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-NH_2</td>
<td>0.825</td>
<td>p-NO_2</td>
<td>2.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-NH_2-C_6H_4 NH</td>
<td>0.924</td>
<td>p-C_6H_4 NH</td>
<td>2.505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-CH_2O</td>
<td>1.202</td>
<td>o-NO_2</td>
<td>4.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-CH_2ONH</td>
<td>1.298</td>
<td>p-C_6H_4O-C_6H_4 NH</td>
<td>6.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-CH_3</td>
<td>1.353</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-3 フェノール、およびアミノ誘導体の置換基効果の対比

表1と表2とについて、同種の置換基に関して\( \mu_{PH} \)と\( \mu_{AN} \)をプロットすると図5が得られた。本図から、パラ置換体に関してはほぼ直線関係が認められるが、オルト置換体ではこの直線からはずれが大きいことがわかる。しかもこのはずれはフェノール側で著しい。また同一置換基についてみた場合、ラジカル反応性を高める効果はフェノール核上よりも、アミノ核上において顕著であることがわかる。

図5 \( \mu_{AN} \)と\( \mu_{PH} \)との関係

3.4 \( \mu \)値とステレン誘導体のラジカル重合性におよぼす置換基効果との対比

前節までで得られたフェノール、およびアミノ誘導体のラジカル反応性に対する置換基定数（\( \mu \)）と、モノマー、特にステレン誘導体のラジカル重合反応性におよぼす置換基効果とを対比検討した。

表4にHam18によって整理されたステレンの核置換誘導体の

表 4 ステレン核置換誘導体のステレン生成ラジカルに対する相対反応性（1/τ_i）

<table>
<thead>
<tr>
<th>置換基</th>
<th>1/τ_i</th>
<th>置換基</th>
<th>1/τ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4.00</td>
<td>2,5-(CH₃)₂</td>
<td>1.73</td>
</tr>
<tr>
<td>p-(CH₃)₂Si</td>
<td>1.00</td>
<td>o-Cl</td>
<td>1.79</td>
</tr>
<tr>
<td>m-Cl</td>
<td>1.00</td>
<td>m-Br</td>
<td>1.82</td>
</tr>
<tr>
<td>m-FSO₂</td>
<td>1.25</td>
<td>m-NO₂</td>
<td>2.22</td>
</tr>
<tr>
<td>p-Cl</td>
<td>1.35</td>
<td>3,4-(CH₃)₃</td>
<td>2.46</td>
</tr>
<tr>
<td>p-(CH₃)₂Si</td>
<td>1.41</td>
<td>2,5-Cl₂</td>
<td>3.45</td>
</tr>
<tr>
<td>p-F</td>
<td>1.43</td>
<td>p-CN</td>
<td>3.57</td>
</tr>
<tr>
<td>p-Br</td>
<td>1.44</td>
<td>p-FSO₂</td>
<td>4.00</td>
</tr>
<tr>
<td>m-Cl</td>
<td>1.56</td>
<td>p-NH₄SO₃</td>
<td>4.17</td>
</tr>
<tr>
<td>p-I</td>
<td>1.61</td>
<td>p-NO₂</td>
<td>5.27</td>
</tr>
<tr>
<td>m-CF₃</td>
<td>1.61</td>
<td>p-KSO₃</td>
<td>16~50</td>
</tr>
</tbody>
</table>

ステレン生成ラジカルに対する相対反応性を示した。また、表 5 は α-メチルステレンの核置換誘導体の無水メタノール酸に対する相対ラジカル反応性を示した。ここで相対反応性（1/τ_i）は式（8）で定義される反応速度定数比で次のように示される。

\[
\frac{1}{τ_i} = \frac{K_{12}}{K_{11}} = Q_i \cdot \exp[-e_i(e_i - e_j)]
\]  

ここで、K₁₁ および K₁₂ はそれぞれステレン生成ラジカルに対するステレン核置換体、およびステレンモノマーとの共重合反応速度定数、Q_i および Q_l はそれぞれステレン核置換体、およびステレンモノマーの相対反応性（共鳴項）、e_i および e_j はそれぞれステレン核置換体、およびステレンモノマーの電子因子を意味する。したがって、相対反応性（1/τ_i）が大きいほど、ラジカルととの反応性が高いと言える。

そこで、表 4、および表 6 における置換基の序列と、表 2 のそれと対比するところの反応性が認められる。つまり置換基のμ値が高いほどラジカルとの反応性が大きいと言える。

3.5 μ値とステレン核置換体のQ値との対比
川端ら39)によって修正、整理されたステレンの核置換誘導体のQ値を、その大きさによって整理すると表 6 が得られた。

表 6 ステレン誘導体の置換基とQ値

<table>
<thead>
<tr>
<th>置換基</th>
<th>Q値</th>
<th>置換基</th>
<th>Q値</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.0</td>
<td>p-Br</td>
<td>1.4</td>
</tr>
<tr>
<td>m-CH₃</td>
<td>1.0</td>
<td>p-Cl</td>
<td>1.4</td>
</tr>
<tr>
<td>p-CH₃O</td>
<td>1.0</td>
<td>p-CN</td>
<td>1.6</td>
</tr>
<tr>
<td>p-CH₃</td>
<td>1.06</td>
<td>m-Cl</td>
<td>1.6</td>
</tr>
<tr>
<td>o-CH₃</td>
<td>0.9</td>
<td>o-Cl</td>
<td>1.8</td>
</tr>
<tr>
<td>p-NO₂</td>
<td>1.0</td>
<td>m-Br</td>
<td>1.8</td>
</tr>
<tr>
<td>p-(CH₃)₂Si</td>
<td>1.0</td>
<td>m-NO₂</td>
<td>2.2</td>
</tr>
<tr>
<td>p-CH₃ONH</td>
<td>1.3</td>
<td>p-CN</td>
<td>3.6</td>
</tr>
<tr>
<td>p-(CH₃)₂Si</td>
<td>1.4</td>
<td>p-NH₂SO₃</td>
<td>4.3</td>
</tr>
<tr>
<td>m-CF₃</td>
<td>1.4</td>
<td>p-NO₂</td>
<td>5.3</td>
</tr>
</tbody>
</table>

以上の結果から、酸化防止剂の酸素と核置換体のラジカルに対する相対反応性（1/τ_i）が、ならびにそれらの共重合反応に対する共鳴項（Q値）に対してはほぼパラレンルな関係にあることを示した。

3-4, および 3-5 の結果を総合すると、アニュリオンおよびフェノールの核置換誘導体のラジカルとの反応性、すなわちラジカル重合阻止能が、したがって酸化防止能は、それら誘導体、つまり酸化防止剤自体の共役性が大きく、それから生じるラジカルが共鳴安定化しやすいほど高くなると言えよう。

4 結 言

アニュリオン、およびフェノール系の酸化防止剤を含む約 30 種の核置換誘導体について、AIBN 開始による酸化ビニルのラジカル重合速度を測定し、単純 LCAO-MO 法から計算したそれぞれの誘導体のラジカル反応性を基に、アニュリオン、ならびにフェノール誘導体の置換基定数（μ）を試算した。μ値と酸化ビニルのラジカル重合速度（dt）との関には次式が成立した。

\[ μ = 0.075 \cdot dt \]

また、フェノール、およびアニュリオンの核上置換基のラジカル反応性向上および防効果はアニュリオンにおいて顕著であるが、オルト位置換体では例外がみられることがわかった。

さらに、μ値はステレンの核置換誘導体のラジカルに対する相対反応性（1/τ_i）とならびにそれらの共重合反応に対する共鳴項（Q値）に対してはほぼパラレンルな関係にあることを示した。