3.6.4 sym-ジメチルジェフェニルジ（trans-10-ビナノール）ジシロキサン（XII）の合成 X 10 g をエチルアルコール 100 ml に溶し、X の時と同様にして、生成物 3.7 g を得た。元素分析値 C 76.66%、H 9.82%（CsH24OSi）として計算値 C 76.98%、H 9.43%、IR、1600（s）、1430（s）、1355（s）、1260（vs）、1160（vs）、1060（s）、860（s）、770（s）cm⁻¹。

3.7 シロキサンポリマーの合成

3.7.1 ポリメチル (9-p-メンテント-1-イル) シロキサン (XIII) の合成 11.9g をエチルアルコール 100 ml に溶し、X の時と同様にして、生成物 3.7 g を得た。元素分析値 C 76.66%、H 9.82%（CsH24OSi）として計算値 C 76.98%、H 9.43%、IR、1600（s）、1430（s）、1355（s）、1260（vs）、1160（vs）、1060（s）、860（s）、770（s）cm⁻¹。
表1 MCを用いる総合反応

<table>
<thead>
<tr>
<th>方法</th>
<th>規則性化合物</th>
<th>反応条件</th>
<th>生 成 物</th>
<th>融点（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>95%エタノール中</td>
<td>CH₃C₆H₄O₇</td>
<td>N-CH₃-</td>
<td>105〜106</td>
</tr>
<tr>
<td>b</td>
<td>95%エタノール中</td>
<td>CH₃C₆H₄O₇</td>
<td>CH₃C₆H₄OH</td>
<td>181〜182</td>
</tr>
<tr>
<td>c</td>
<td>2-メタノールベンゾテトラゾール</td>
<td>CH₃C₆H₄OH</td>
<td>N-CH₃-</td>
<td>157〜158°</td>
</tr>
</tbody>
</table>

a) 引用文献6, mp 157℃

2-1 モデル化合物

MNのモデル化合物としては鋼状第二級アミドのN-メトキシメチル体が最も適当であるが、純粋に単離することが困難であるので本研究では入手および取り扱いが容易なN-メチルオルト-2-カップラクタム(MC)およびN-メトキシメチルオルト-2カップラクタム(MOC)を用いた。MCはベンソン5の方法によって、2-カップラクタムをパラルボルムアルデヒドでメチロニ酸化して得た。

MOCは、MCをメタノール中硫酸亜でメチロニ酸化して合成した。前記おそらく、MCをN-クロルメチルオルト-2カップラクタムとし、ナトリウムメチルラートとの反応によっても得ることができた。

2-2 モデル化合物の総合反応

MCと芳香族親核性化合物との反応をCairnsら10の MNとチオール類との反応条件をも参考にして行ない、つきの総合生成物を得た。すなわち、アルコール中加水分解(a法)でMCとp-クロレゾールからN-(5-メチル-2-オキシベンジル)-2-カップラクタム(M1)を、アルコール中放置(b法)でMCとβ-ナフート

ールとからN-(β-オキシンα-ナフチルメチル)-3-エタノール中での反応を行なったときと同じ95%エタノール中での反応を試みた。この結果は表2にまとめた。

2-3 MNの反応

2-3-1 触媒の効果 MNの反応を行うに当たって、モデル化合物の総合反応を行なったときと同じ95%エタノール中でのMNに対する様々な触媒の影響を調べた。この結果は表2にまとめた。

表2 MNに対する触媒の効果

<table>
<thead>
<tr>
<th>実装所</th>
<th>触 媒</th>
<th>使用百分率</th>
<th>時間</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>イオンエチル</td>
<td>60</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>フェニルベンズテトラゾール</td>
<td>60</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>クロマゾール</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>キャラメル</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>キャラメル</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>キャラメル</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>キャラメル</td>
<td>60</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>キャラメル</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2に示したように、80℃でMNは無触媒やアルカリ触媒の作用では変化を受けないが、塩酸や硫酸、フッ化ホウ素エチルなどの酸性触媒が存在すると6-ナイロンのN-メトキシメチル基は容易に加水分解を受けて6-ナイロンになった。無触媒MNの不溶性は本反応系に触媒を添加して反応を行ない、この反応系に触媒を添加して反応を行ない、この反応系に触媒を添加して反応を行ない、この反応系に触媒を添加して反応を行なった結果を表2に示した。

MNの総合反応を行うため2-3-1で効果を示さなかった有
表 3 MN と親水性化合物との反応の試み

<table>
<thead>
<tr>
<th>番号</th>
<th>親水性化合物</th>
<th>反応媒</th>
<th>温度(°C)</th>
<th>反応時間(h)</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>亜クロール</td>
<td>酢酸</td>
<td>選抜 6</td>
<td>MNの回収</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>⾰酸</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ジタール</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>脂肪塩</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>フタ化ホルムイソアミル</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td>ナイロン</td>
</tr>
<tr>
<td>6</td>
<td>亜塩酸</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>亜塩酸</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2-メルカプトベンジダモール</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td>MNの回収</td>
</tr>
<tr>
<td>9</td>
<td>キオシング酸</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>酢酸</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>亜塩酸</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>亜塩酸</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2-メルカプトベンジダモール</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td>MNの回収</td>
</tr>
<tr>
<td>14</td>
<td>2-メルカプトベンジダモール</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2-メチロールアモール</td>
<td>塩基アン</td>
<td>酢酸</td>
<td>選抜 60</td>
<td>MNの回収</td>
</tr>
</tbody>
</table>

機械性の鉄触媒も検討した。これは MN の加水分解によるナイロン生成反応を目的の触媒反応と反応機構が異なるため（後述）であるが、相手親水性化合物が存在しない場合と同様に MN の回収を終了。この結果の条件ではこれら有機酸はまったく何の効果も示さないことが確認された。しかし酸化存在下での触媒反応を行ない、MN と親水性化合物との反応で、MN の加水分解生成物であるナイロンが得られるにとどまった（実験番号、13, 5, 6, 8, 8, 10, 11）。これは 2-3-1 の結果とまったく同様であり、MN で直接親水性化合物に比べて、メチルメチル基の脱離しやすい原因があることを示している。

MN の総合反応を他の反応条件で行なった場合も原料回収に至った（9, 10, 15）。

2-3-3 無水系での MN の総合反応 以上では MN が加水分解を受けてナイロンにかえる反応を述べたが、この反応を抑制する目的の総合反応は、さらに加水分解を抑制する。反応条件を加えるべき反応を、以下の反応を試み、その結果を表 4 に示した。

表 4 MN の総合反応

| (MN と相手触媒 1 g, 各触媒 1 m, 総触媒 20 m を使用) |
|------------------|----------|---------|----------|
| 反応温度(°C) | 反応時間(hr) | 結果 |
| 1 | 亜クロール | BF₄⁺ 選抜 7 MN | |
| 2 | BF₄⁺ 選抜 7 MN | 約 50 | |
| 3 | BF₄⁺ 約 50 MN | 約 50 | |
| 4 | BF₄⁺ 選抜 7 MN | 約 50 | |
| 5 | BF₄⁺ 選抜 7 MN | 約 50 | |
| 6 | BF₄⁺ 選抜 7 MN | 約 50 | |
| 7 | BF₄⁺ 選抜 7 MN | 約 50 | |
| 8 | BF₄⁺ 選抜 7 MN | 約 50 | |
| 9 | BF₄⁺ 選抜 7 MN | 約 50 | |

実験番号 1～5 では、あらかじめ MN と親水性化合物を無水エタノール中によく浸してから、触媒を加えて反応を行なった。2, 4, 5 では触媒として塩酸塩を用いているので完全な無水状態ではない。ここでも MN は弱めると加水分解されナイロンになった。これは表記と同様の傾向である。しかし、BF₄⁺ と BF₄⁺ と 20°C の反応では目的とするナイロンに BF₄⁺ が結合された生成物が得られた。これについては、反応生成物の検討を述べる。これと同条件の下で、亜クロールや亜酸を反応させ、親水性化合物を多数存在させて触媒をかわる反応条件下（6, 8）や直接 150°C に加熱した場合（7, 9）にも MN との反応は進行しなかった。

2-4 加水分解速度

前節までに観察されたことは、モンキホ化合物から予想される反応性に対して MN と親水性化合物の総合反応はほとんど進行せず、多くの場合（触媒則）ナイロンへの分解反応（1）が行なわれることである。この分解反応が酸の存在下ですみやかに起こることは、Cairns らがすでに認めているが、その機構については触れている。
N-メトキシンメチル6-ナイロンの反応：秋山・長楽・和気・大河原

3・4-ジプロモニトロペンゼン, 2,4,6-トリプロモアニリンなどの存在がある。

2・6 MN の総合反応生成物

得られた生成物 A～G について, 反応点付近の推定構造, 確認の手段として用いた赤外吸収スペクトルの波数, 融点または分解点, 溶解性などをまとめて述べる。赤外吸収の波数はナイロン自体には見られない新しい波数であり, 融点も 6-ナイロンと大きく異なるものがある。溶解性について特に記さないものは, DMF, DMSO, メタノール, ベンゼンアルコールに対する溶解性がナイロンと同様で, 室温では不溶であった。これは反応率が高くなく, 母体構造がナイロンに近い場合に認められた。

[A]: 本体化合物, mp 197～202°C, 元素分析値, C 64.17%, H 9.28%, ナイロンとしての計算値, C 63.63, H 9.80 より炭素が多く水分が少ない。赤外吸収, 1150 (肩), 1010, 820, 750 cm⁻¹, これらはモデル物質と共通である。

[B]: 黄緑色固体, mp 195～200°C, ブルーム分析値 7.54% (反応率 40% に相当), 赤外吸収, 970, 810, 770 cm⁻¹, 810 cm⁻¹ の吸収から 1,4-置換体と推定した。

[C]: 黄褐色固体, クロル分析値, 1.54% (反応率 13% に相当), 赤外吸収 975, 880, 870, 800, 740 cm⁻¹ の小吸収が認められた。

[D]: 淡黄色粉末, mp 180～190°C, イオン分析値, 0.49% (反応率 3%), 赤外吸収, 875, 815, 770 cm⁻¹, 置換位置は不明である。

[E]: 淡黄色固体, mp 200～210°C, 赤外吸収, 1335 (＝トロフェノール), 1295, 1085, 835, 750 cm⁻¹, 4-＝トロフェノールでは通常 2-位で反応するに。

[F]: 黄褐色固体, mp 197～202°C, 赤外吸収, 1330 (＝トロフェノール), 1040, 905, 820, 795, 765, 740 cm⁻¹, 室温でベンゼンアルコールに可溶, 2-＝トロフェノールは通常 4-位で反応するに。

[G]: 白色固体, mp 165～175°C, クロル分析値, 14.0% (反応率 100%), 赤外吸収 2800～2500 (OH), 1220, 1140, 1095, 980, 865, 850, 750～730 cm⁻¹, これらの吸収はモデル物質と同様である。室温でベンゼンアルコールに可溶であった。
メトキシメチル6-ナフタリンの反応：秋山・長栄・和気・大河原

3-2 モデル化合物

N-メチルカルプロラクトン（MC）は文献記載の方法で合成し、エタノールから再結晶し、mp 65-67℃（文献値 65-66℃）のものを使用した。

N-メトキシメチルカルプロラクトン（MC）は、MC を無水メタノール中で硫酸触媒を用いて 10℃ 以下で反応させ、触媒除去をしたものを蒸留によって得た。bp 85-87℃/0.7 mmHg。元素分析値 C 61.12%、H 9.62%、計算値 C 61.18%、H 9.84%。このものは、MC を塩化トロンチールで処理して N-クロルメチルカルプロラクトンとし、無水エタノール中でナトリウムメチラートと反応させて得られるものと同一であった。

N-(5-メチル-2-オキシベンゼン)−e-カプロラクトン（M 1）MC 21g と p-クレンゾール 16g を 95% エタノール 40ml にとかして水で冷やしながら、濃硫酸 5ml とエタノール 10ml の混合液を少しずつ滴下した。その後1時間加熱を保ち、50℃ で6時間加熱を続けた。反応後水に加えて抽出し油状物を得た。これをエタノールで抽出し、炭酸ナトリウム水溶液、水、酢酸で洗浄し、蒸留でエタールと p-クレンゾール (85-92 ℃/3mmHg) を除去して残部を水洗浄し、エタノールから再結晶すると、23g (67%)、mp 104-105℃、再結晶で mp 105-106℃、収率分析値 5.07%、計算値 5.20%、赤外吸収スペクトルには 3300〜2500(υOH), 1620 と 1510(アミド)、870、840、820 cm⁻¹ の吸収が見られた。

N-(β-オキシ-α-ナフチルメチル)-e-カプロラクトン（M 2）MC 3g と β-ナフチル 3g を 95% エタノール 10ml にとかして水で冷やしながら、濃硫酸 1ml を含む等エタノール 5ml を少しずつ滴下した。温度を徐々に室温に保つと、6 時間かきまぜを続けると結晶が析出する。これを次の別に収量 3.2g、mp 178〜181℃、冷却からさらに 1.6g の結晶を取り出した。mp 178-181℃、全収量 85%、95% エタノールから再結晶、mp 181〜182℃、収率分析値 6.07%、計算値 6.01%、赤外吸収スペクトルの主な波数は、3300〜2500(υOH), 1600 付近(アミド) 1190, 1150, 1080, 1010, 985, 820, 810, 750cm⁻¹ と見られた。

N-(ベンチアゾール-2-チオメチル)-e-カプロラクトン（M 3）MC と 2-ベンチアゾールペンベントールから Benson らの方法で合成した。エタノールから再結晶して、mp 157〜158℃、文献値 157℃。

3・3 MN の反応

3・3・1 触媒の効果 MN 3g を 95% エタノール 20ml 中で各種触媒 1ml を用いて表 2 記載の温度および時間で処理した。ナフタリンへの変化が認められるものは、反応進行中に溶媒が白濁しややチリウム状の析出物を生じる。これを別にエタノール、すいかキセイソーカ水溶浴、アセトンの順によく洗って乾燥する。このものの赤外吸収スペクトルはナフタリンのものと同一である。さらに空気でのエタノール、ベンゼンアクリール、m-クロプロレールに対する誘導性もナフタリンと同様であった。

3-3-2 反応の選択 3・3・1 の反応系に MN よりやや過剰の親電子触媒を共存させて反応を行った。未反応 MN の回収やナフタリンへの変化の判定は 3・3・1 とほぼ同様に行った。

3-3-3 無水溶媒の利用 a) MN 1g と親電子試薬 1g を無水エタノール 20ml に加える。完全には溶解しないが、酸性触媒 1ml を加えると均一な溶液となる。これを表 4 記載の反応温度、時間で処理した。反応生成物の処理は 3・3・1 と述べたとおりである。結果は表 4 に示した。

3-4 MN およびモデル化合物の加水分解速度

加水分解反応速度を MN では 30、35、40、50℃ の温度で、モデル化合物では 50、60、70℃ の各温度で測定した。MN についての操作は次のとおりである。40 メッシャ以下に粒をそろえた試料を十分電気乾燥した後、約 1.26 g を精粋し、80% エタノール 50ml に溶かして恒温槽に所定の温度で保つ。これに触媒 11 等mass 1ml を加え、溶けた時を時間 0 として一定時間ごとに 5ml をビペットで取り出し、加水分解で生じたホルムアルデヒドを RCN 法で定量することによって反応速度を求めめた。モデル化合物の MC、MOC についても同様に行った。

ホルムアルデヒドの定量 Schlech の方法を用いて行った。MN の反応では、50ml 共栓付三角フラスコにあらかじめ 0.1N のシアン化カリウム水溶液 5ml と 80% エタノール 10ml と pH 9.7 の緩衝溶液（炭酸ナトリウムとホルム酸の混合液）10ml を入れており、かきまぜながらビペットアトートした反応溶液を投入する。このさいポリマーが沈殿して析出した。さらにこれを 30% 硫酸マグネシウム水溶液 1ml と炭酸アンモニウム 0.2g を加えて、ポリマーをかき混ぜ、その液を 20ml と正確に取り出し、あらかじめ 80% エタノール 10ml を入れておいた 200ml 共栓付三角フラスコにうつす。これを 0〜5℃で 10〜15 分保持した後、10% サツカリウム水溶液 10ml とアンモニア水溶液を加えてすばやく 0.05N 硫酸滴定液で過剰のシアン化カリウムを定量した。この値をもとにしてホルムアルデヒドの生成量を算出した。モデル化合物の反応では除外する必要がないので、ビペットアトートしたのもそのまま滴定して生成ホルムアルデヒドの量を求めた。これらの結果を図 1, 2, 3 のグラフで表わした。

3・5 硫酸中の反応

N-(3,5-ジクロロ-2-オキシベンゼン)-e-カプロラクトン（M 4）濃硫酸 20ml 中にジクロロペンベントール 4.9g を溶かし、外部を氷水で冷やしながら MC 4.3g を少しずつ加えた。液内の
ニコチンアミド構造を含む高分子の合成と反応*1*2*3
（昭和42年12月26日 受理）

栗栖安彦・中島聡平・大河原信

補酵素 NAD の反応基であるニコチンアミド（NA）構造をもつ高分子の合成を試みた。すなわち非架橋および架橋ポリスチレン（PS）のテルメチル化物に NA を反応させ、またポリスチレンイミンニコチン酸アミドを反応させると好収率で NA 型構造の導入されたポリマーがえられ、Na₂S₂O₃ などで還元するとそれぞれのヒドロ NA 型ポリマーとなる。PS-ヒドロ NA 型（SNH）の行う還元反応を、モデル化合物である N-ベンジルヒドロ NA のそれと比較した。SNH はマラカイトグリーンなどの色素、ヒドロペルオキシド類、クララシーンを還元する。またテトラアミノメタンを還元し付加物をつくられる。さらに光感染料の存在下での酸素との反応を検討した。モデル化合物では可視光照射下では H₂O₂ の生成とともに四塩化ジインが生じる。オゾン照射下ではさらにビリドンにまで酸化される。ポリマーの場合、酸素の吸収はかなり進行するが、H₂O₂ の生成はわずかであった。

1 緒 言

生体内酸化還元反応に寄与する補酵素 NAD（ニコチンアミドアデニヌスカレオチド）の有用性は、その分子中のニコチンアミド構造が、次式のような水素移動反応を営むことによって行なわれることが知られている。

\[\text{CONH}_2 + \text{H}^+ \rightarrow \text{CONH}_2 \]

多くの酸化還元反応は適当な酵素と補酵素の組み合わせで行なわれるが、次第にその構造変異であるニコチンアミド（以下 NA と略）の簡単な誘導体のみによる（非酵素反応）酸化還元系が見出され、そのような簡素化された系によって NAD の作用機構を解明しようとする努力が多くの人々によって試みられている。

著者らは官能性高分子の一例として、各種酸化還元樹脂の合成と反応について一連の研究を続けてきたが、その一つとして先に NA 構造を含む高分子の合成を報告した。その報告では主に

1) 河原信, 篠岡 勝, 井本英二, 工化, 65, 1652(1962)。

*1 この報文を「官能性高分子の合成と反応に関する研究（第 37 報）」とする。
*2 前報（36 報）、秋山、和気、工業研、工化, 71, 923 (1968)。
*3 Yasuhiko KURUSU, Makoto OKAWARA 東京工業大学資源化学研究所：東京都目黑区大岡山。
*4 Kohei NAKAJIMA 宇野英夫（株）中央研究所：宇部市大字小番。