1 論 言

β-アルミノ、ビンドテン酸などの原料として重要なβ-アルミノプロピオニトリルはβ-クロルプロピオニトリルとアンモニアの反応1)、β-アルコキシプロピオニトリルとの反応2)およびアクロニトリトリルとアンモニアなどの反応により合成される。現在工業原料として安価に得られるアクロニトリトリルを用いる方法は古くより研究され、下式に示す逐次競争反応であって、反応生成物としてβ-アルミノプロピオニトリルの他に、β-イミノプロピオニトリルと極少量のトリ-β-シアノエチアルミンが得られる。

\[\text{CH}_2=\text{CHCN} + \text{NH}_3 \xrightarrow{k_1} \text{NH}_2\text{CH}_2\text{CH}_2\text{CN} \] (1)

\[\text{CH}_2=\text{CHCN} + \text{NH}_2\text{CH}_2\text{CH}_3 \xrightarrow{k_2} \text{NH} (\text{CH}_2\text{CH}_3\text{CN})_2 \] (2)

\[\text{CH}_2=\text{CHCN} + \text{NH}_2\text{CH}_3\text{CH}_2\text{CN} \xrightarrow{k_2} \text{N}(\text{CH}_2\text{CH}_3\text{CN})_2 \] (3)

β-アルミノプロピオニトリルの収率および反応アンモニア水濃度、反応温度、反応時間などの影響についての研究は多数行なわれている。28% アンモニア水とアクロニトリトリルを反応させるときの収率は低いが3,4)、予熟した28% アンモニア水の表面下にアクロニトリトリルを導入して反応させると収率が向上する5)。

また液体アンモニアを用いる反応も報告されているが6)、アンモニア水の場合より収率は低い。Smolin, Beegle はパイプ型連続反応器を用いて、反応時間、反応温度、アンモニア水濃度およびアンモニアとアクロニトリトリルのモル比の反応におよぼす影響について検討している7)。

しかし反応速度論的研究については、わずかに Lobkins の報告があるのみである。彼らは 0~20°C で 11.8 mol 濃度以上のアンモニア水とアクロニトリトリルの反応を行ない、式 (1) のみを考えて反応速度がアクロニトリトリル、アンモニアに関係してそれぞれ 1 次であると報告している。しかし逐次競争反応として取扱われていないので、反応温度、アンモニア水濃度によるβ-アルミノプロピオニトリルの収率の変化を説明することができる。

そこで著者らは 6.0~28.6 重量%アンモニア水とアクロニトリトリルの反応を 30~60°C にて行ない、アクロニトリトリル（MELCOM-1410 形）を用いて見かけの速度定数を測定した。また式 (2) は反応生成物を分析することにより無視できることが分った。β-アルミノプロピオニトリルの収率およびアンモニア水濃度の影響について検討し、\(k_1, k_2 \) が反応液中の水濃度とともに変化を示しかかった。反応温度を上げると収率が向上する理由はそれぞれの活性エネルギーが違うことにより説明された。最後に反応機構についても考察し、水が proton transfer agent として作用することを明らかにし、見かけの速度定数における水濃度の影響を説明することができた。

2 実 験

2-1 試 料

アクロニトリトリルは市販試薬を Bamford, Jenkins の方法8) に従って精製し、使用前に蒸留した。アンモニア水は市販アンモニア水をイオン交換水で希釈した。反応温度の測定には 6.0, 12.3, 18.4, 28.7 重量% 水溶液を使用した。電位差滴定法のためのアセトニトリリルは市販アセトニトリリルを単蒸し、0.5 N 過塩素酸-ジオキサン溶液を市販 70% 過塩素酸水溶液にジオキサンにて希釈した。

2-2 実験法

2-2-1 アクロニトリトリルの減少速度の測定 ステンレス製内

容積 30 ml のオートクレーブを外部より冷却し、アンモニア水

3 結果と考察

3.1 アクリロニトリルとアンモニアの反応生成物

一般にアンモニアとアクリロニトリルの反応は、

\[CH_2=CHCN + NH_3 \rightarrow CH_2=CHCN \cdot NH_2 \]

という反応を伴う。この反応は、チアミンD-ビタミンの分解を伴う。
β-アミノプロピオニトリル）と水和したアンモニア（またはβ-アミノプロピオニトリル）の和の濃度で表わしている*2。

式 (5), (6) より

$$\frac{C}{B_0} = \frac{1}{K-1} \left\{ \left(\frac{B}{B_0} \right)^K - \left(\frac{B}{B_0} \right)^K \right\}$$ (8)

ここで

$$K = \frac{k_2}{k_1}$$ (9)

表1に示した条件での A の減少速度を図 1～4 に示した。図中の実線はアナログ計算機でとった試料とした結果であり、それより得た k1, k2 の値を表 1 に示した。

表 1 の Run 3 を例として k1, k2 の求め方を述べる。

12.3% アンモニア水溶液 2.0 ml とアクリロニトリル 0.2 ml を用いると反応開始前のそれぞれの濃度は、A0 = 1.355, B0 = 6.183, C0 = D0 = 0 mol/l である。はじめ冷却しておき恒温槽（30 °C）にセットして反応させるので、1分後を反応開始時間としてそのときの定量値より A の減少量だけ C が生成したと近似し、次の初期条件を得た。

$$A_0' = 1.325, B_0' = 6.153, C_0' = 0.030, D_0' = 0$$ (10)

アクリロニトリルの減少速度を A_0' を基準として図 5 に示す。

![図 1 アクリロニトリルの減少速度](image1.png)

28.7% アンモニア 2.0 ml とアクリロニトリル 0.2 ml の反応 (Run 1, 4, 8)
A_0'：冷却した反応液を恒温槽中1分間反応させたときのアクリロニトリル濃度, A：残存アクリロニトリル濃度

![図 2 アクリロニトリルの減少速度](image2.png)

15.4% アンモニア 2.0 ml とアクリロニトリル 0.2 ml の反応 (Run 2, 5, 9, 12)
A_0'：A：図1と同じ

![図 3 アクリロニトリルの減少速度](image3.png)

12.3% アンモニア水 2.0 ml とアクリロニトリル 0.2 ml の反応 (Run 3, 5, 10, 13)
A_0', A：図1と同じ

![図 4 アクリロニトリルの減少速度](image4.png)

6.0% アンモニア水 2.0 ml とアクリロニトリル 0.2 ml の反応 (Run 7, 11, 14)
A_0', A：図1と同じ

![図 5 アクリロニトリルの減少速度とアナログ計算機による演算結果](image5.png)

B/B_0

C/A_0'

D/A_0'

B, C, D の変化は $k_1=0.0030$ のときの演算結果

*2 後述の式 (12), (13) を参照。
反応終了後の生成物の収率より式 (8) を用いて計算し K = 16.3 を得るので、式 (4) ～ (7) を式 (10) の初期条件のもとにアナログ計算機で k1 をトライアルすると図中の実線のように k1 = 0.0030 を得る。

3. 3 速度定数に及ぼす水濃度の影響

一般にアミノ類のシアノエチル化反応においては、水、アルコールのような proton transfer agent として作用する物質は反応を促進するといわれ、未反応アミノアはアミンが同様の作用をすることが考えられる。表 1 において一定温度でも水濃度またはアンモニア初濃度が変わるとき見かけの速度定数が変化することがわかる。アンモニア水とアクリロニトリルの反応ではアクリロニトリルと水（またはアンモニア）の濃度を一定にしてアンモニア（または水）濃度を変えて実験を行なうことができないので、第 3 物質としてジオキサンを加えて k1 におよぼす水とアンモニア初濃度の影響を初期反応速度より調べた。表 2 と図 6 にアンモニア初濃度の影響を、

表 2 k1 におよぼすアンモニア初濃度の影響

<table>
<thead>
<tr>
<th>Run No.</th>
<th>溫度 (℃)</th>
<th>アクリロニトリル初濃度 (mol/l)</th>
<th>H2O 濃度 (mol/l)</th>
<th>NH3 初濃度 (mol/l)</th>
<th>k1 (mol/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>30</td>
<td>0.358</td>
<td>15.71</td>
<td>0.340</td>
<td>0.0019</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>0.364</td>
<td>16.00</td>
<td>0.680</td>
<td>0.0025</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>0.352</td>
<td>16.00</td>
<td>1.021</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>0.352</td>
<td>16.00</td>
<td>1.377</td>
<td></td>
</tr>
</tbody>
</table>

a) アンモニア水、アクリロニトリル、ジオキサン系での結果。
b) 低温域から低温域を移したときの速度を初速度とした。
c) メタノレッドを指示薬として 0.5 N 酰酸で滴定して求めた。

図 6 k1 におよぼすアンモニア初濃度の影響

アンモニア水、アクリロニトリル、ジオキサン系での結果

反応条件 〇: Run 15, ●: Run 16, △: Run 17, □: Run 18
A1: 15℃ 時から最初より加えたアクリロニトリル濃度；B: アクリロニトリルの添加だけ k1-アミノプロピオニトリルが生成したとして計算したアンモニア濃度

表 3 k1 におよぼす水濃度の影響

<table>
<thead>
<tr>
<th>Run No.</th>
<th>溫度 (℃)</th>
<th>アクリロニトリル初濃度 (mol/l)</th>
<th>H2O 濃度 (mol/l)</th>
<th>NH3 初濃度 (mol/l)</th>
<th>k1 (mol/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>30</td>
<td>0.367</td>
<td>3.50</td>
<td>0.488</td>
<td>0.00042</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>0.367</td>
<td>9.05</td>
<td>0.514</td>
<td>0.00013</td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>0.362</td>
<td>16.40</td>
<td>1.018</td>
<td>0.00022</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>0.358</td>
<td>20.15</td>
<td>1.007</td>
<td>0.00028</td>
</tr>
<tr>
<td>23</td>
<td>30</td>
<td>0.354</td>
<td>25.70</td>
<td>1.005</td>
<td>0.00036</td>
</tr>
</tbody>
</table>

a), b), c) 表 2 と同じ。

3 反応が大きくなると減次反応のため図 7 のように直線に近らない。

図 7 k1 におよぼす水濃度の影響

アンモニア水、アクリロニトリル、ジオキサン系での結果

反応条件 〇: Run 19, ●: Run 20, ○: Run 21, □: Run 22
A1, B: 図 6 と同じ

表 3 と図 7 に水濃度の影響を示した。これらより k1 はアンモニア初濃度の影響がわずか、水濃度とともに増加することがわかった。k1 についても k1 と同様に水濃度の影響をうけると思われ、この原因については次に反応機構の面より考察する。

3. 3 反応機構と反応速度

3. 3 においてジオキサンを加えた系では速度定数が水濃度により変化することを明らかにした。そこでジオキサンを加えない表 1 の条件で得られた速度常数と反応液中の水濃度をプロットすると図 8, 9 のようである。

図 8 k1 と水濃度の関係

△: 表 3 の実験結果

図 9 k1 と水濃度の関係

図 8, 9 の傾向を示す。
アンモニア水溶液では式 (11) の中間で水酸化アンモニアが考えられていたが、赤外吸収スペクトル、X線解析の研究より、水酸化アンモニアは否定され、アンモニアの水和物が考えられている[10]。

\[
\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^- \quad (11)
\]

したがって次の平衡が考えられる。

\[
\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^- \quad (12)
\]

同様に β-アミノプロピオニトリルについても、次の平衡を考える。

\[
\text{NH}_2\text{CH}_2\text{CH}_2\text{CN} + \text{H}_2\text{O} \rightleftharpoons \text{NH}_2\text{CH}_2\text{CH}_2\text{CN} \cdot \text{H}_2\text{O} \quad (13)
\]

式 (4)～(7) においてアンモニアおよびアクリロニトリルの濃度を、遊離と水和したもののの和の濃度で表わしたが、一般にアミノのシルアミノ化反応において認められている窒素の非共有電子対がアクリロニトリルの β-水素を親電子的に攻撃する機構[10]から考えて、遊離のものに対する濃度を考えるべきである。

また、結合エネルギーから考えて、アンモニアより水を proton transfer agent と考えるのが適当と思われる[10]。

以上の考察を、3・1 で述べたように、反応を無視して、次の反応を考えた。

\[
\text{C}_2\text{H}_2\text{CN} + \text{NH}_4 \rightleftharpoons \text{NH}_4\text{CH}_2\text{CH}_2\text{CN} \quad (14)
\]

\[
\text{NH}_2\text{CH}_2\text{CH}_2\text{CN} + \text{H}_2\text{O} \rightleftharpoons \text{NH}_2\text{CH}_2\text{CH}_2\text{CN} + \text{H}_2\text{O} \quad (15)^{**}
\]

\[
\text{CH}_2\text{CN} + \text{NH}_2\text{CH}_2\text{CH}_2\text{CN} \rightleftharpoons \text{NCCH}_2\text{NH}_2\text{CH}_2\text{CH}_2\text{CN} \quad (16)
\]

\[
\text{NCCH}_2\text{NH}_2\text{CH}_2\text{CH}_2\text{CN} + \text{H}_2\text{O} \rightleftharpoons \text{NH}_2\text{CH}_2\text{CH}_2\text{CN} + \text{H}_2\text{O} \quad (17)^{**}
\]

式 (15) と式 (17) は中間の構造を考える。

\[
\text{R} N \rightleftharpoons \text{C}-\text{CH}_2\text{CH}_2\text{CN}
\]

定常状態法を用いて整理すると式次式が導かれる。

\[
\frac{dC}{dt} = k_1'k_4'[\text{H}_2\text{O}] \cdot A[\text{NH}_4] - k_2'k_3'[\text{H}_2\text{O}] \cdot A[\text{NH}_2\text{CH}_2\text{CH}_2\text{CN}] \quad (18)
\]

\[
\frac{dD}{dt} = k_2'k_3'[\text{H}_2\text{O}] \cdot A[\text{NH}_2\text{CH}_2\text{CH}_2\text{CN}] - k_1'k_4'[\text{H}_2\text{O}] \cdot A[\text{NH}_4] \quad (19)
\]

式 (6)、(7) を式 (12)、(13) の平衡を考えて書きかえると

\[
\frac{dC}{dt} = k_1A[[\text{NH}_3][\text{NH}_4\cdot\text{H}_2\text{O}]]
\]

\[
-k_2A[[\text{NH}_2\text{CH}_2\text{CH}_2\text{CN} + \text{NH}_2\text{CH}_2\text{CH}_2\text{CN} \cdot \text{H}_2\text{O}]] \quad (6)
\]

\[
\frac{dD}{dt} = k_2A[[\text{NH}_2\text{CH}_2\text{CH}_2\text{CN} + \text{NH}_2\text{CH}_2\text{CH}_2\text{CN} \cdot \text{H}_2\text{O}]] \quad (7)
\]

となる。ここで式（6）と式 (7) は式 (18)、(19) と同一であるが、後者の関係式が導かれる。

17）井上 等編，「岩波化学事典」（岩波書店，1958）p.66，p.687。

18）安東，化学，16，935（1961）。

19）式 (15)，(17) では水が協役反応的に proton transfer agent の役をすると考えたが、まず水がプロトンを与えて OH⁻ となり、次に窒素についたプロトンをとると考えても、得られる式は式 (18)、(19) を少し再編にしただけで同じ形をしています。
1,4-ジエン合成触媒による共役ジエンの選択水素添加

岩本 昌夫

1 論 言

ブタジェンから直鎖オリゴマーを生成する反応1 およびブタジェンとエチレンから1,4-ヘキサジェンを生成する反応2 では、形式的にはオレフィンの水素原子のジェンへの移動が起こっている。著者らは、1,4-ジエンを選択的に生成するための触媒系について種々検討を加えたが、その接触作用の本質は活性金属-水素結合をもつ中間体の生成にあるとの考えを前提とした。そのような活性金属-水素結合をもつものは、オレフィン類の2重結合の移動あるいはオレフィン類の水素添加にも活性があると考えられる。

1）Masao IWAMOTO 東洋レーヨン(株)中央研究所：大阪市

1.5 見かけの速度定数p および反応温度の影響

表1中のRun 1, 4, 8: Run 2, 5, 9, 12のように、反応液組成が同じで温度を変えて行なった実験より得たの図11, 図12のように直線を勾配より見かけの活性化エネルギーを計算すると次の値を得る。

\[
E_1 = 18.1 \text{kcal/mol} \quad E_2 = 12.4 \text{kcal/mol}
\]

水温法により速度定数の値は変化するが、それぞれの組成で求めた活性化エネルギーは同じであった。

なお、本研究の発表を許可された当研究所長武田健一博士に、御指導をいただいた研究員中川国夫博士、ならびにアシスタントさんをいただいた原田昌義の諸氏に感謝いたします。

\[
E_1 = 18.1 \text{kcal/mol} \quad E_2 = 12.4 \text{kcal/mol}
\]

5) 近藤 勝, 三宅昭雄, 有機金属化合物討論会講演要旨集, p.160 (1967).

図12 \(E_1 \) の温度依存性

(明文1945年5月9日受理)