塩化ホスホニトリル三量体のジオールによる塩素置换反応と反応物の重合体について*
(昭 和 45 年 1 月 12 日 受 理)

樋原 鴻雪・斎藤 誠**

塩化ホスホニトリル三量体 (以下 (PNCI₂)₃ と略記) の p,p'-ビフェニール (以下 PBP と略記) による塩素置换反応を (PNCI₂)₃ の融液、アセトン、THF、アセトンニトリルおよびオクソシン溶液中で、PBP あるいは OBQ のモル比 6 の条件で反応させた。その結果、これらの条件下では、塩素を含まない重合体を生成することはなかった。

1 緒 言
塩化ホスホニトリル三量体 (以下 (PNCI₂)₃ と略記) は、アセトン、THF、アセトンニトリルおよびオクソシン溶液中で、PBP あるいは OBQ のモル比 6 の条件で反応させた。その結果、これらの条件下では、塩素を含まない重合体を生成することはなかった。

2 実 験 方法
2-1 (PNCI₂)₃、PBP および OBQ の調製
(PNCI₂)₃ は、Schenk および Römer*1 の方法を若干変更して合成した。PBP はペンジンをジアソ化したのち、加水分解する方法*2 で合成した。また OBQ は市販品特級を使用した。

2-2 分析方法　
2-2-1 リンの分析 試料を精粋し放冷コルベン中に入れ、これに 10 ml の濃硫酸と少量の濃硝酸を加え、ミクロプローナーで加熱分解する。つぎに 30% 過酸化水素水 5 滴を添加したのち加熱する。
この操作を 3～4 回くり返したのち、蒸留水 3 ml を加えて 2 ～3 分間煮沸し、再び冷却してから濃硫酸 2 ml を加える。つぎに 10% 酸ナトリウム溶液あるいはアンモニア水で中和したのち、蒸留水で一定量に希釈し、この分解液をモリブデン法*3 でリンを定量した。

2-2-2 窒素の定量 ケルダール分解コルベン中に精粋した試料、硫酸銅 3 g、硫酸カリウム 2 g および濃酸化水素 20 ml を入れ、加熱分解する。分解後この液を蒸留水で一定量に希釈し、ケルダール法*3 で窒素を定量した。

2-2-3 塩素の定量 試料を精粋し 10%水酸化ナトリウム溶液 100 ml とともに 300 ml 三角フラスコ中に入れ、1 m のガラス冷却管をつけ、90℃の温度で 10～15 時間加熱分解したのち、分解液を分離し、蒸留水で一定量に希釈した。つぎにこの分解液の一定量を用い、Vohard 法*4 で塩素を定量した。

2-3 発ガスの確認方法
(PNCI₂)₃ と PBP との反応によって発生の予想されるガスは、塩化水素および塩酸ガス、また空気中の酸素による塩素ガスなどの発生も予想される。塩素ガスはケチリン法*5、塩化水素ガスは硫酸鉄と水酸化ナトリウム溶液の濃度変化または塩酸塩酸酸度は、塩素カリウム溶液の変色による方法*6 でそれぞれ確認した。

2-4 重合体の物性測定
重合体の物性測定は吸水性*3、耐薬品性*6、吸水性*5 および耐熱性*7 などについて調べた。

2-5 使用装置
自動温度調節器および赤外共分光光度計は既報*8 と同じものをそれぞれ使用した。

2-6 実験条件
(PNCI₂)₃ と PBP との反応のときには、最初は (PNCI₂)₃ の融点付近の温度 120℃とし、それ以後每 5℃の温度で昇温させた。また 180℃の一定温度下でも反応させた。一方、溶媒均一反応のときには、アセトン、THF、アセトンニトリルおよびジオキサン溶液をそれぞれ 200 ml 用い、PBP/(PNCI₂)₃ のモル比を 6 とした。また PBP および OBQ をナトリウムフェノラートとして反応させるときには、PBP あるいは OBQ/(PNCI₂)₃ のモル比を 1～6 に変化させた。表 1 に反応に用いる (PNCI₂)₃、PBP、OBQ の重量 (PNCI₂)₃, PBP, OBQ の重量

<table>
<thead>
<tr>
<th>表 1</th>
<th>(PNCI₂)₃, PBP および OBQ の重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PNCI₂)₃ (g)</td>
<td>PBP (g)</td>
</tr>
<tr>
<td>2</td>
<td>2.436</td>
</tr>
<tr>
<td>3</td>
<td>1.914</td>
</tr>
<tr>
<td>6</td>
<td>1.183</td>
</tr>
<tr>
<td>OBQ/(PNCI₂)₃</td>
<td>(PNCI₂)₃ (g)</td>
</tr>
<tr>
<td>2</td>
<td>3.271</td>
</tr>
<tr>
<td>3</td>
<td>2.436</td>
</tr>
<tr>
<td>6</td>
<td>1.914</td>
</tr>
</tbody>
</table>

*1 本報を「塩化ホスホニトリルに関する研究（第 2 報）」と

*2 Meisetsu KAJIWARA, Hajime SAITO 名古屋大学工学部

応用化学教室：名古屋市千種区不老町

2) H. Hirsch, Ber., 22, 335 (1889).
4) 日本化学会編，実験化学講座 (第 14 卷)，丸善 (1958) p. 181.
9) 樋原 鴻雪，斎藤 誠，工化，66, 621 (1963).
10) JIS K-6911, 5.29 (1962).
11) JIS K-6911, 5.27 (1962).
12) JIS K-6911, 5.23 (1962).
3 実験結果および考察
3-1 (PNCI₂₃) 蒸気中での PBP による塩素置換反応
3-1-1 発生ガスの確認 (PNCI₂₃) と PBP との反応によって発生しているガスを確認するために、α-トリジン法等によって試験した。すなわち、(PNCI₂₃) を浴融するこの蒸気中で PBP を添加した場合、反応系を 10 cm/H₂O の減圧にし、α-トリジン溶液、硝酸銀溶液とアルカリ標準溶液およびヨウ素カリウム溶液、それぞれ 10 時間発生ガスを吸収させた。その結果、α-トリジンおよびヨウ素カリウム溶液の変色はほとんど認められなかった。硝酸銀溶液からは白色的沈殿が生成した。この溶液を硝酸性にし、洗浄乾燥したが、この洗浄乾燥を含めた、またアノミア水でアルカリ性にした場合、洗浄乾燥を含めた。一方、アルカリ標準溶液の濃度は吸収前に比較し、かなりその濃度は減少していることがわかった。以上のような結果から、(PNCI₂₃) と PBP との反応によって生成しているガスは、塩化水素ガスであることがわかった。

3-1-2 反応時間と塩素水素発生率 3-1-1 の実験結果から、(PNCI₂₃) と PBP との反応は脱塩素水素反応が主反応であることがわかった。そこで (PNCI₂₃) の接触時間の温度 112°C から、1 分間に 5°C の速度で昇温し、反応系を 10 cm/H₂O の減圧にし、このときの反応時間と塩素水素ガスの発生率との関係を示す。その結果を図 1 に示した。なお塩素水素ガスの発生率は、モル比 6 の条件下で、(PNCI₂₃) 中の 6 個の塩素原子が PBP の分子で置換されたときに発生する塩化水素ガス量を 1 とし計算して求めた。

図 1 反応時間と反応率

図 1 の結果から、120～180°C の温度では、塩素水素発生率は約 40～45% であることがわかった。またさらに反応温度を高くした結果、発生率は 40～45% 以上にならなかった。つぎに 180°C の一定温度下での、反応時間が塩化水素発生率との関係を示す。その結果を図 2 に示した。この結果、塩化水素発生率は約 46% で一定になり、反応時間を長くしても、その発生率は上昇しなかった。以上の結果から、この条件下では、塩化水素の生成から、平均 2～3 個の塩素原子が PBP 分子で置換されていることがわかった。

3-1-3 反応生成物の分離とその化学構成 3-1-2 の実験で、180°C の一定温度下で反応させて得られた反応混合物を表 2 に示す。

<table>
<thead>
<tr>
<th>表 2 反応混合物の処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>反応混合物</td>
</tr>
<tr>
<td>ベンゼン</td>
</tr>
<tr>
<td>逆分</td>
</tr>
</tbody>
</table>

たかつて反応を行った。すなわち、表 2 に示した反応混合物を処理した結果、(1)，(2) および (3) の残分をえ、つぎにこれら残分を化学分析、赤外線吸収スペクトラルおよび X 線回折などによって調べ、その結果を表 3 に示した。

<table>
<thead>
<tr>
<th>表 3 (I)，(II) および (III) の分析結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>理論生成物</td>
</tr>
<tr>
<td>(PNCI₂₃)</td>
</tr>
<tr>
<td>6HOR-OH</td>
</tr>
<tr>
<td>R =</td>
</tr>
<tr>
<td>P N Cl</td>
</tr>
<tr>
<td>(PNCI₂₃)</td>
</tr>
<tr>
<td>P N Cl</td>
</tr>
</tbody>
</table>

表 3 の結果から、(I) は未反応の (PNCI₂₃) と PBP、(II) は置換体とその分解物、また (III) はアセトンと可溶の分解物と考えられた。以上のことから、この条件では反応生成物を出来るだけ分解を防ぐことがわかった。

3-2 液相均一反応による (PNCI₂₃) と PBP との反応
3-2-1 アセトン、THF、アセトン-THF およびジオキサン溶媒中での反応 アセトン他三種類の溶媒を用い、反応時間を 24 時間とし、(PNCI₂₃) と PBP との反応させた、表 4 に示した。反応混合液を処理した。すなわち、

<table>
<thead>
<tr>
<th>表 4 反応液の処理方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>反応混合液</td>
</tr>
<tr>
<td>処理</td>
</tr>
</tbody>
</table>

経過にしたがって、反応混合液を処理した結果、残分 (N) と (V) をえた。つぎにこの (N) と (V) を化学分析、赤外線吸収スペクトルおよび X 線回折などによって調べ、その結果を図 5 に示した。

この結果、(N) と (V) の化学組成は表 6 に示した。この結果は、分離が不完全によるものと考えられた。そこで THF およびアセトニトリル溶媒を用いて反応させたときに、比較的生成量の多い (V) をさらに表 7 に示した結果が観察した。

表 8 に示したがって、反応混合液を処理した結果、残分 (W) をえた。また二酸化炭素の生成量は反応の (PNCI₂₃) が多かった、一方、X 線回折および赤外線吸収スペクトルなどから確認した。つぎにこの未反応の (PNCI₂₃) 量から、(PNCI₂₃) の反応部
表 5 (N) および (V) の分析結果

<table>
<thead>
<tr>
<th>溶媒</th>
<th>取量 P (%)</th>
<th>N (%)</th>
<th>Cl (%)</th>
<th>IR, X-ray および性質</th>
</tr>
</thead>
<tbody>
<tr>
<td>アセトン (Ⅷ)</td>
<td>0.2 7.72</td>
<td>4.88</td>
<td>23.98</td>
<td>IR-3.350 cm⁻¹ に OH-1,610 と 1.500 cm⁻¹ に C₆H₄C₆H₄, 1.200 cm⁻¹ に N-P</td>
</tr>
<tr>
<td>(V)</td>
<td>4.4 7.02</td>
<td>2.93</td>
<td>5.57</td>
<td>IR-3.300 cm⁻¹ に OH-1,500 と 1.500 cm⁻¹ に C₆H₄C₆H₄, 1.200 cm⁻¹ に N-P, 830 cm⁻¹ に P-P</td>
</tr>
<tr>
<td>THF (Ⅳ)</td>
<td>0.3 2.18</td>
<td>50.35</td>
<td>8.08</td>
<td>IR-3.300 cm⁻¹ に OH-1,600 と 1.500 cm⁻¹ に C₆H₄C₆H₄, 1.200 cm⁻¹ に P-P, 830 cm⁻¹ に P-P</td>
</tr>
<tr>
<td>ジオキサン (Ⅳ)</td>
<td>0.5 1.89</td>
<td>50.17</td>
<td>8.38</td>
<td>IR-3.300 cm⁻¹ に OH-broad, 1.600 と 1.500 cm⁻¹ に C₆H₄C₆H₄, 1.200 cm⁻¹ に P-P, 830 cm⁻¹ に P-P</td>
</tr>
<tr>
<td>(V)</td>
<td>3.1 4.59</td>
<td>2.02</td>
<td>2.86</td>
<td>IR-2.900 cm⁻¹ に OH, その他に 1.400 cm⁻¹ に一本回折線を与えた</td>
</tr>
</tbody>
</table>

表 6 (V) の分離方法

<table>
<thead>
<tr>
<th>溶媒</th>
<th>取量 P (%)</th>
<th>N (%)</th>
<th>Cl (%)</th>
<th>IR, X-ray および性質</th>
</tr>
</thead>
<tbody>
<tr>
<td>アセトン (Ⅷ)</td>
<td>0.2 7.72</td>
<td>4.88</td>
<td>23.98</td>
<td>IR-3.350 cm⁻¹ に OH-1,610 と 1.500 cm⁻¹ に C₆H₄C₆H₄, 1.200 cm⁻¹ に N-P</td>
</tr>
<tr>
<td>(V)</td>
<td>4.4 7.02</td>
<td>2.93</td>
<td>5.57</td>
<td>IR-3.300 cm⁻¹ に OH-1,500 と 1.500 cm⁻¹ に C₆H₄C₆H₄, 1.200 cm⁻¹ に N-P, 830 cm⁻¹ に P-P</td>
</tr>
<tr>
<td>THF (Ⅳ)</td>
<td>0.3 2.18</td>
<td>50.35</td>
<td>8.08</td>
<td>IR-3.300 cm⁻¹ に OH-1,600 と 1.500 cm⁻¹ に C₆H₄C₆H₄, 1.200 cm⁻¹ に P-P, 830 cm⁻¹ に P-P</td>
</tr>
<tr>
<td>ジオキサン (Ⅳ)</td>
<td>0.5 1.89</td>
<td>50.17</td>
<td>8.38</td>
<td>IR-3.300 cm⁻¹ に OH-broad, 1.600 と 1.500 cm⁻¹ に C₆H₄C₆H₄, 1.200 cm⁻¹ に P-P, 830 cm⁻¹ に P-P</td>
</tr>
<tr>
<td>(V)</td>
<td>3.1 4.59</td>
<td>2.02</td>
<td>2.86</td>
<td>IR-2.900 cm⁻¹ に OH, その他に 1.400 cm⁻¹ に一本回折線を与えた</td>
</tr>
</tbody>
</table>

表 7 (VI) および (V) の分析結果

<table>
<thead>
<tr>
<th>反応時間 (hr)</th>
<th>P (%)</th>
<th>N (%)</th>
<th>Cl (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(THF)</td>
<td>3.49</td>
<td>4.04</td>
<td>6.37</td>
</tr>
<tr>
<td>38</td>
<td>3.12</td>
<td>5.01</td>
<td>5.80</td>
</tr>
<tr>
<td>68</td>
<td>5.28</td>
<td>6.23</td>
<td>6.35</td>
</tr>
<tr>
<td>(CH₂CN)</td>
<td>5.36</td>
<td>2.93</td>
<td>15.69</td>
</tr>
<tr>
<td>12</td>
<td>7.26</td>
<td>3.86</td>
<td>13.33</td>
</tr>
<tr>
<td>28</td>
<td>3.35</td>
<td>2.14</td>
<td>9.52</td>
</tr>
</tbody>
</table>

表 8 反応混合液の処理

<table>
<thead>
<tr>
<th>反応混合液</th>
<th>処理液</th>
<th>残留</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ⅳ)</td>
<td>ジオキサン</td>
<td></td>
</tr>
<tr>
<td>(V)</td>
<td>残留</td>
<td></td>
</tr>
</tbody>
</table>

表 9 NaCl および (X) の生成量

<table>
<thead>
<tr>
<th>モル比</th>
<th>NaCl (g)</th>
<th>(X) (g)</th>
<th>NaCl (g)</th>
<th>(X) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.897</td>
<td>4.566</td>
<td>0.811</td>
<td>4.200</td>
</tr>
<tr>
<td>3</td>
<td>0.973</td>
<td>4.410</td>
<td>0.937</td>
<td>4.411</td>
</tr>
<tr>
<td>6</td>
<td>1.205</td>
<td>4.369</td>
<td>1.021</td>
<td>4.560</td>
</tr>
</tbody>
</table>

表 10 (X) の分析結果

<table>
<thead>
<tr>
<th>モル組 成 式</th>
<th>理 論 量</th>
<th>実 験 量</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₃N₅(OROH)₂Cl</td>
<td>14.18</td>
<td>18.78</td>
</tr>
<tr>
<td>mp=230°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₃N₅(OROH)₂Cl₂</td>
<td>11.32</td>
<td>13.59</td>
</tr>
<tr>
<td>mp=270°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₃N₅(OROH)₂Cl₃</td>
<td>7.72</td>
<td>6.62</td>
</tr>
<tr>
<td>MW=1196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW=1400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表9に示した。

表9から、この条件下では、ほぼ100% (PNC12)_3とPBPとは反応していることがわかった。つぎに (K)を化学分析し、その結果を表10に示した。

表10の結果から、理論値と実験値がほぼ一致していることおよび表10の結果などから、(K) (PNC12)_3とPBPとの反応によってえられた生成物であることがわかった。また融点の測定結果、PBPで (PNC12)_3の中の塩素置換数が増加するとともに、その置換体の融点は上昇していることがわかった。これは T_m=4H/AS との関係から、生成した置換体のPBPとP_3N_3との分子間力が大きくなっていること、また分子の対称性がよくなり、可解性が少なくなり、剛直性が増加していることによると考えられる。つぎに (K)を赤外線吸収スペクトルによってしらべ、その結果を図3に示した。

図3の結果から、モル比を変化させてえられた生成物中には、1.235 cm^{-1} 付近に P-N、950 cm^{-1} 付近に P-O-C、820 cm^{-1} および530 cm^{-1}付近に P_3N_3 環の吸収があることがわかった。また P-NおよびP_3N_3 環の吸収は (PNC12)_3 のそれに比較し、長波数側に移動していることが認められた。これはPBP分子の影響によるものと思われる。

3・3・2 (PNC12)_3 とOBPフェノラートとの反応 3・3・1 同様に、OBPフェノラートを合成し、モル比1、2および3の条件で反応させたのち、表11に示したよう、反応混合液を処理した。つぎに反応によって生成した塩化ナトリウムと (K)量をしらべ、その結果を図11に示した。

表11 NaClと(K)の生成量

<table>
<thead>
<tr>
<th>モル</th>
<th>理論値</th>
<th>実験値</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl (g)</td>
<td>(K) (g)</td>
<td>NaCl (g)</td>
</tr>
<tr>
<td>1</td>
<td>2.180</td>
<td>8.677</td>
</tr>
<tr>
<td>2</td>
<td>2.028</td>
<td>8.445</td>
</tr>
<tr>
<td>3</td>
<td>3.862</td>
<td>7.004</td>
</tr>
</tbody>
</table>

図3 PN-PB系置換体(モル比6)

表12 (K)の分析結果

<table>
<thead>
<tr>
<th>モル</th>
<th>組成</th>
<th>理論値</th>
<th>実験値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P(N)(ORO)Cl</td>
<td>P (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>2</td>
<td>P_3N_3(ORO)Cl_2</td>
<td>15.77</td>
<td>7.35</td>
</tr>
<tr>
<td>3</td>
<td>P_3N_3(ORO)</td>
<td>15.04</td>
<td>6.47</td>
</tr>
</tbody>
</table>

図4 PN-OBP系置換体、モル比3

図4から、P-NおよびP_3N_3の吸収はPBP置換体に比較し、低波数側に移動していることが認められた。この原因は、(PNF_2)_3, (PNC_2)_3, および(PNBr_2)_3などのP-OおよびP_3N_3の吸収の移動から判断し、P-O-Rの結合力に関係しているものと考えられた。

3・4 PBPおよびOBP置換体の重合

PBPおよびOBPの置換体を300°Cの温度で、約8時間加熱した結果、モル比6のOBP置換体を除き、他は置換体から樹脂状の重合体をえた。モル比6のOBP置換体から重合体をえられなかったのは、図12に示したように、この温度では、置換体に融解することによるものと考えた。そこでこの置換体に約5wt%の正リン酸を添加し、300°Cの温度で8時間加熱重合させた結果、樹脂状の重合体がえられた。ここで正リン酸を添加したのは、一般にP_3N_3系化合物はイオノン重合で昇報告されている。

1958

工業化学雑誌 73巻9号 (1970) (66)

ので、これにしたがった結果、重合体が生成した。このことからこれらの置換体はイオン重合をしているものと考えられた。つぎにえられた重合体の TGA を熱天秤によってしらべ、その結果を図5および図6に示した。

図5 PN-PBP系重合体の TGA (5℃/min) (1) M-2, 0.123g (2) M-3, 0.128g (3) M-6, 0.084g

図6 PN-OBP系重合体の TGA (5℃/min) (1) M-1, 0.101g (2) M-2, 0.121g (3) M-3, 0.125g

この結果、これらの重合体は比較的熱に安定であることがわかる。またこれらの重合体と他の PBP を用いた重合体との熱的性質の比較を表13に示した。

表13 他の PBP重合体との熱的性質の比較

| CH3CH2CH2 | Si-N-Si-O-R | 加熱減
| CH3 | CH3 |
| Si-O-R-O- | 18,10,7 |
| OH OH OH | 475℃, 10%
| R R R | 500℃, 7%
| O O O | 700℃, 28%
| NH-PO-N-Ph | 500℃, 15%
| NH-PO-N-Ph | 700℃, 25%

R = __ | Ph | Ph |
		Ph
		Ph
		Ph

表14 重合体の物性

項目	PN-PBP重合体	PN-OBP重合体				
测定值	M-2	M-3	M-6	M-1	M-2	M-3
吸水率 (%)	10.23	15.98	12.96	13.98	11.06	9.44
加水分解率 (%)	0	0	0	0	0	0
結晶度	H2SO4	变形セオ	变形セオ	变形セオ		
デシン	变形セオ	变形セオ				

を図7に示した。

図7から、PBP・モル比2およびOBP・モル比1からえられた重合体中、酸素による P-O-P 結合22)は 950 cm⁻¹ 附近に存在していることがわかった。さらにこの重合体をアルカリ溶解23)。

27) L.J. Bellamy, "The infra red Spectra of Complexes".
したのち、蒸留水で一定量に希釈し、残存塩素量を定量した結果、PBP モル比 2 の重合体の残存量は 9.35%、OBP モル比 1 の重合体の残存量は 23.59% であることがわかった。赤外線吸収スペクトルおよび化学解析などの結果から、未置換の塩素を含む重合体の耐水性は P-O-P 結合の生成によるものであることがわかった。

4 緒 結

(PNC1)3 と PBP とを (PNC1)3 の溶液中で反応させ、この反応によって発生するガスをしらべた結果、主反応は脱塩素水素反応であることがわかった。またこの方法では、反応率は約 40～45% で、これ以上の反応率では、温度を高めることにも、ほとんど変化しなかった。つぎに、

(PNC1)3 と PBP を四種類の溶媒を用いて反応させた結果、発生する塩化水素によって、生成物は分解され、予想した生成物はえられなかった。そこで PBP をナトリウムフェノラートとし、(PNC1)3 と反応させた結果、予想した生成物がえられた。また OBP と PB と同様にフェノラートと反応させた結果、予想した生成物がえられた。また、(PNC1)3 中の塩素が PBP あるいは OBP の分子に置換さ

30) 日本化学会編、“実験化学講座 (第15巻)” (1958) p. 165.

放電法による纖維状ホウ化ジルコニウムの成長

（昭和 45 年 2 月 24 日受理）

杉 山 幸 三・高 橋 武 彦

二ホウ化ジルコニウム繊維を四塩化ジルコニウム、三塩化ホウ素、水素およびアルゴン混合ガスから成長させる条件について検討した。放電電流および交流周波数はそれぞれ 0.2～5 mA および 20～400 Hz とした。繊維の成長に伴ない、極間距離が一定となるように調整した。成長速度は主として浸漬電流に関し、0.5～1.0 mA のとき成長速度は最大となり、繊維の直径は最小となった。これにつれ因子は気温、気温で、成長速度は最大 400～500°C の間で得られた。混合ガス中のアルゴン濃度が高くなるほど、成長速度も大きくなった。四塩化ジルコニウム濃度については 0.6% のとき最高速度を示した。さらに三塩化ホウ素濃度が増大するのにかかって成長速度も徐々に上昇した。X 線回折によって成長した繊維の構造は二ホウ化ジルコニウムと同定されが、この場合（001）回折強度は比較的弱かった。断面の微差電位測定から繊維の成長は溶融状態の中心部の形成と、それに続く半径方向への成長との二段階で起こることが推定された。両対数目盛で繊維の直径と強度をプロットした曲線は直線関係を示し、直径 9 μのとき最高の強度 210 kg/mm² に達した。

1 緒 言

著者らは放電法による微細チタンおよび炭化ジルコニア

繊維の成長について報告したが。これらの Nb 族窒素化および炭素化は食塩型構造をとり、放電による成長においてもホイスカーの気相生成の場合が 111 方向への成長がより易しい。同じ Nb 族のホウ化物は炭化物、窒素化物に異なり、六方晶

*1 Kohzoh SIGUIYAMA, Takehiko TAKAHASHI 名古屋大学工学部：名古屋市千種区不老町。
1) 高橋武彦、杉山幸三、伊藤秀章、鈴木嘉博、工化、73. 498 (1970)。
2) 杉山幸三、高橋武彦、工化投稿中；日本化学会第22年会予稿集 757 (1969)。

系であって、繊維状成長に当ってその c 軸方向が繊維軸方向となりか否かは興味深いところである。本報では三塩化ホウ素、四塩化ジルコニウム、水素、アルゴン混合ガス中で放電させて二ホウ化ジルコニウム繊維が 14 mm/min に達する成長速度で得られ、X 線回折によれば重合体が見られるとホウ化ジルコニウムおよび二ホウ化ジルコニウム (ZrB2) は認められず、またその繊維側面（100）面に存在する軸向配向をもつことがわかったので報告する。

4) チタニウム繊維会報，“チタン、ジルコニウム、ハフニウム”，ワゲナ，東京（1965） p. 336.