無塩化アルミニウム存在下のアルコール類によるアルミニウムの溶解反応に対する無機塩類の添加効果
（昭和45年11月14日受理）
作業 児 一・浅岡 忠知*

無塩化アルミニウムを触媒としたさいのエチルアルコールまたはイソプロピルアルコールによるアルミニウムの溶解反応に対して、硫酸塩またはハロゲン化金屬などの無機塩類を添加したときの反応促進効果について検討した。反応速度の尺度としてのアルミニウムの溶解度、その反応系の比比導度が減少すると増大した。またこの反応系の比比導度は添加塩類の構成成分のイオン半径の値が小さいときに大であった。このイオンによる反応の促進効果は、塩イオンよりもイオンの方が大であった。これらのイオンの促進効果はアルコールが腐食したイオンの作用によるものであると推定した。

1 緒 言
アルミニウムはアルコール類に溶解してアルミニウムアルコキシドが生成することはすでに知られているが。このアルコールによるアルミニウムの溶解反応は薄漬が存在するが、これに無塩化アルミニウムを添加すると腐食が短縮され、アルミニウムの溶解反応速度が増大する。

本報では、このアルコール-塩化アルミニウム-アルミニウムの反応系にさらに無機塩類を添加したときの影響を検討した結果、アルミニウムの溶解速度を著しく促進する結果を得た。

この促進効果の主な原因は添加無機塩類のイオン種の触媒作用にもとづくものであると推定し、その機構についても検討したので報告する。

2 実 験

2-1 試 料
アルミニウム板は既報と同様のものを用い、その酸洗および表面調整も既報と同様の方法でおこなった。エチルアルコール（以下 ETA）、イソプロピルアルコール（以下 IPA）は市販の1級品を常法にしたがって精製したもの。無機塩類はいずれも市販の特級または1級品をそのまま、または必要によって減圧乾燥したものを使用した。

2-2 実験操作
内容量 200 ml の三つロフラス（温度計、吸収管つきの冷却管をそなえたもの）にアルコール（ETA 20.0 g、IPA 30.0 g）、無機塩類（ETA 系では 0.006 mol、IPA 系では 0.0041 mol）および塩化アルミニウム（2.0 g）を、水浴で冷却しながら添加し、かきまぜの下で所定の反応温度（ETA 系は 78℃、IPA 系では 82℃）に達してからアルミニウム（ETA 系では 2.93 g、IPA 系では 3.38 g）を投入して、所定時間（ETA 系では 180 min、IPA 系では 60 min）反応をおこなった。

*1 Eiichi TSUKURIMICHI, Tadatomo ASAOKA 富山大学工学部工芸学科：高岡市中川町。
2）たとえば、小竹無二雄、"新編有機化学実験法"、理工出版（1960）p. 119。
3）たとえば、角谷清明、山田 昌、田島義正、工化 35, 307 (1932)。
4）作業児一、浅岡忠知、宮崎守正、有機合成化学、27, 1114 (1969)。

2-3 反応進行の尺度
反応進行の尺度としては、アルミニウムの溶解度、アルコールの溶解でアルミニウムの生成量または本素の発生量を測定する方法がある。本反応に類似のハロゲン化アルカリによるアルミニウムの腐食反応においては、Stern らは尺度としてアルミニウムの生成量を重量法で測定している。安川らは同様の反応において重量法、比比導法におけるアルミニウムの比比導量および反応の進行とともに反応系が着色することから、液相中の変化を光強度を測定する 3 方法について検討し、すべて一致することを確かめ、一部重現性を用いている。本報ではアルミニウムの溶解速度を尺度とする方法をとり、その測定を重量法でおこなった。すなわち、同一条件の下で少なくとも実験を 2 回以上繰り返し、えられたアルミニウムの生成量の平均値から溶解度を計算し、それを反応進行の尺度として、ここでアルコールによるアルミニウムの溶解反応は見かけ上零次反応であることが知られ、著者らもそれを確認している。したがってアルミニウムの溶解（溶解）率をもってそのまま反応率として無機塩類の促進効果を比較することができる。

2-4 反応系の比比導度の測定
アルミニウムを除いた反応系の所定量を温度で 10 分間加熱し、室温で 60 分間放置したものを、電気伝導度測定器（東亜電波製 CM-1 DB 型）を用いて、反応系の比比導度を測定した。測定値は 25℃で補正した。

3 実験結果および考察

3-1 硫酸塩の添加
検討した 10 種類の硫酸塩について、すべてアルミニウムの溶解反応を促進した。この促進効果は反応系の比比導度との間に一定の関連性があり、比比導度は塩系を構成している二酸化塩との間に密接な関係があることが認められた。アルミニウムの溶解度と反応系の比比導度との関係を図 1 に示した。

この図より、反応系の比比導度は塩類中の金属の原子価によって分類するのが妥当である。そして各グループにおいてアルミニウムの溶解反応系では、反応系の比比導度の値が小さいほどその促進作用が大きい。またこの促進効果は塩類中の金属イオンの荷

6）安川亜郎、金属表面技術、13，354 (1962)。
7）同上、新潟大学工学部研究報告，12，277 (1963)。

*2 本反応系では、反応生成物としてのアルミニウムアルコキシドも触媒として働くので、アルミニウムの溶解反応機構は複雑である。
図 1 アルミニウムの溶解率と反応系の比電導度との関係

図 2 硫酸塩中の金属のイオン半径と反応系の比電導度との関係

図 3 カリウム塩を添加したアルミニウムの溶解率と反応系の比電導度との関係

図 4 1価イオン半径と反応系の比電導度との関係

電数によって大きな影響を与え、1 値<2 値<3 値の順であった。

本反応において、硫酸メタルまたは硫酸ビスマス（I）などの金属のイオン化定数は、アルミニウムのそれよりも大であるので、促進効果の原因としては、一応これらのイオン化傾向の小さい金属イオンによる電気化学的な作用も考えているものと考えられるが、一方、アルミニウムの溶解率と塩類中の金属イオンのイオン化定数の序列との間には直接的な関係が認められず、また塩基塩またはマグネシウム塩などによっても大きな促進効果を示しており、さらに、後記の陰イオンの影響を考慮し、塩類による促進効果に対しては、金属イオン、アルミニウムに対する電気化学的な作用が支配的な要素ではないものと考えられる。

図 1 の結果から、アルミニウムの溶解率が塩類中の金属イオンの荷電数および反応系の比電導度との間に密接な関係があることから、これらの金属イオン半径の間に一定の関係があることが認められた。図 2 に金属のイオン半径と反応系の比電導度との関係を示した。

すなわち、金属のイオン半径が大になるにしたがって比電導度が大になる傾向が認められた。したがって図 1 との関係から、アルミニウムの溶解反応に対して、金属のイオン半径が小さいほど促進効果が大きいという結果を示している。水溶液中におけるマグネシウムの腐食反応において、添加塩類中のイオン種が反応促進に対して密接な関係のあることが認められている。

アルミニウムの溶解反応の促進作用が塩類中の金属のイオン半径およびそのイオンの荷電数によって影響されることとは、金属イオンが表面的な作用をおこなっていることを示唆しているものと考えられる。これについては後に考察する。

3-2 陰イオンの影響

本反応の促進効果が塩類中の陽イオン種と密接な関連性のあることが認められたことから、また塩類中の陰イオン種によっても影響をうけることが考えられる。ここではカリウム塩を用いて 1 値の陰イオンをとりあげ、それらイオン半径と比電導度および反応の促進効果との間の関係を調べた。これらの結果を図 3 および図 4 に示した。
オニでは、イオン半径が大の場合には反応系の比電導度が大である。このことは、つぎのとおり考えられる。すなわち、酸性溶液中ではイオンはその溶媒分子によって溶媒和されており、したがってイオンの大きさは溶媒分子の溶媒和数（すなわち、イオンに配位したアルコール分子の数）を含めたイオンの電荷密度によって決定されると考えられる。そしてイオンによって溶媒和する溶媒分子の数は、その分子の大きさやイオン種、そのイオン半径および荷電量によって影響をうけるが、同じ溶液中では一般に荷電量が大なるほど溶媒和数が増大し、また等価イオン間ではイオン半径の小さいイオンほどイオン密が大であるから溶媒和数も大となる。溶媒和数が大のイオンはその有効半径も大であるから等価イオン間では、反応系の比電導度は大きく、と考えられる。本液済中のアルカリ金属の比電導度とイオン半径との関係においては、本報と同様の結果が認められている。

陰陽イオンがアルコール分子によって溶媒和された状態はつぎのように表わすことができると考えられる。

![図](1,1,2-四塩化エタンの選択的塩基化による1,1,2,2-四塩化エタンの製造図.png)

K：陽イオン，A：陰イオン，n：荷電数

9) 亀山直人， "電気化学の理論および応用，上巻1"，丸善（1963）p.49.
10) たとえば，石井義郎， 植田直也共訳， "ハイン有機化学の理論"，丸善（1961）p.38.

すなわち，アルコールの水酸基の水素原子は陽イオンに対しては外側へ，陰イオンに対しては内側へ向かって並ぶから，本反応のように水素が発生する反応では，[I] の方が有効であろうと考えられる。

ここで，本反応系において，アルコールと塩基アルミニウム，酸化アルミニウム，ジクロロアルミニウムアルコーロンを（41）[10]，ジクロロアルミニウムアルコーロンを水溶液中で塩基化させると，塩基アルミニウム，ジクロロアルミニウムアルコーロンの生成には触媒，塩基アルミニウム，ジクロロアルミニウムアルコーロンの生成に必要な触媒，塩基アルミニウムは触媒の存在が必要である。本反応ではアルミニウムがそれの役割をはたしているものと考えられる。

すなわち，

\[
\begin{align*}
\text{ROH} + \text{AlCl}_3 + \text{Al} & \rightarrow \text{Cl-Al-Cl-...-Al} \\
& \rightarrow \text{ROAlCl}_2 + \text{AlCl} + \frac{1}{2} \text{H}_2
\end{align*}
\]

一方，反応系に添加されたイオンの周囲は，[I] または [II] の状態で，アルコールの濃度が増大していると考えられる。

これらのことから，添加塩基によるアルミニウム塩基化反応の促進効果の主な原因は，（1）式において，溶媒和を含むアルコールの濃度を増大させたイオンが水酸基アルミニウムアルコーロンに配位して，触媒のアルコール濃度を増大させるような助触媒的作用によるものであると思われる。

本研究にさいし，実験の一部を援助された松田繁雄君に感謝します。

11) 作木等三，茂岡忠昭， 呉埠静，工化，73，315（1970）。
12) 木田一郎，二木郁子，工化，70，794（1967）。

1，1，2-三塩化エタンの選択的塩基化による 1，1，2，2-四塩化エタンの製造*1,1

（昭和45年3月14日受理）

鈴木 明**・岩田 浩道**・中村 勝太郎**

無水塩化アルミニウム触媒を用いて，1，1，2-三塩化エタンを水酸塩基化して，高選択率をもって，1，1，2，2-四塩化エタンを得た。すなわち，CHCl_3・CHCl_2 3mol%を基質量とし塩基化を行ない，得られた組成は CHCl_3・CHCl_2 92mol%，CHCl_3・CCl_4 1.9mol%および CHCl_3・CCl_4 6.1 mol%である。

また，この反応について，速度論的解析を行ない，連続反応と分解反応の比較を行なった。その他，二，三の知見を得た。

1 論 文

1，1，2-四塩化エタンは金属洗浄剤トリクロルエチレンの製造中間体として重要なものである。この理由は異性体 1，1，2-2-塩化エタンからトリクロルエチレンを得るのが工業的に困難であることがあるから。すなわち，1，1，2-2-塩化エタンをアルカリで脱塩素する場合，1，1，2-2-体より反応が速い[10]。また，活性炭触媒を用いて熱分解を行ない場合には触媒寿命が短いか欠点がある。

一般に，1，1，2-2-塩化エタンはアルカリに 2 分子の塩素を加えさせることによって工業的に製造されている。出発原料アルカリは石油化学工業に得られるエチレンに転換する目的で本研究を行なった。

1，1，2-三塩化エタンは 1，2-2-塩化エタンを光化学的に塩基化する目的で

*1 本報は「エチレンを原料とするトリクロルエチレンの工業的製造法に関する研究」（第 4 報）とする。
*2 第1報，鈴木，岩田，中村，工化，69，1903（1966）。
*3 第2報，鈴木，岩田，中村，工化，70，1044（1967）。
*4 第3報，鈴木，岩田，中村，工化，70，2400（1967）。
*5 Akira SUZUKI 関東電化工業株式会社単独研究：群馬県群の市小川。

*4 Hiromichi IWATA 関東電化工業株式会社水戸工場：群馬県群の市松川。
*5 Jutaro NAKAMURA 関東電化工業株式会社群の工場：群馬県群の市大谷。