溶質の溶け行く過程に就て（補遺一）

（昭和十九年四月十五日受領）

石川 敬彥

液中の溶媒和物を決定する一便法を見出した。夫れによって数種の複雑なる電解質水溶液を解析し、前報において例の不足した電解質の品荷過程を具に考察した結果を追加して置く。

混合液又は溶液中の分子化合物又は溶媒和物を判定する式 (11)*

\[
\frac{(\gamma_{m,1} - 1)(\gamma_{m,1} - 1) - (\gamma_{m,2} - 1)(\gamma_{m,2} - 1)}{(\gamma_{m,1} - 1)(1 - \varepsilon_{m,1})\gamma_{m,1} - (\gamma_{m,2} - 1)(1 - \varepsilon_{m,2})\gamma_{m,2}} = D (\text{恒数})
\]

（但し \(\gamma_{m,i}, \gamma_{m,2}, \gamma_{m,3} \) は接触する二濃度 \(\varepsilon_{m,1}, \varepsilon_{m,2} \)（成分 2 的分子分率）の二濃度 (1 及び 1 における比粘度、\(\mu_1 \) 及び \(\mu_2 \) は分子化合物における成分 1 及び 2 の分子数を表す。) は実験数値が不確実なる場合、\(\mu_1 \) 及び \(\mu_2 \) 的決定に不適當である。故に分子化合物の形式に轉移の存する場合には測定濃度が小刻でない限り適用し得られないか。そこで若し

\[
\frac{\gamma_{m,1} - 1}{\gamma_{m,1} - 1} = \frac{\gamma_{m,2} - 1}{\gamma_{m,2} - 1} = r (\text{恒数})
\]

なる事実が存在するならば式 (11) より

\[
\begin{align*}
\frac{\gamma_{m,1} - 1}{(1 - \varepsilon_{m,1})\gamma_{m,1}^2} &= \frac{\gamma_{m,2} - 1}{(1 - \varepsilon_{m,2})\gamma_{m,2}^2} \\
\frac{\gamma_{m,1} - 1}{(1 - \varepsilon_{m,1})\gamma_{m,1}^2} &= \frac{\gamma_{m,2} - 1}{(1 - \varepsilon_{m,2})\gamma_{m,2}^2}
\end{align*}
\]

が成立する故、式 (11) b を満足する \(\mu_1, \mu_2 \) を決定すればよいことになる。

筆者は硫酸水溶液につき Rhodes 及 Barbou{2}の測定の数値につき分子化合物を模索し、後出の知く、式 (11) a の在実することを見出したので機会に、先づ硫酸水溶液の分子合成状態を変明し、次いで海洋或は主たる窒素及び亜硝酸マグネシウム、更に苦汁処理に有用なる塩化カルシウムの濃厚水溶液に就き Kaufmann 所著{3}の Stakelbeck 測定の標準温度範囲の数値を採用して計算を行って見た。勿論是等可解質水溶液においては、イオンのクーロン力による粘度間差を考慮しなければならぬが、本計算に當ては其影響を考慮し得ると考えられる濃厚溶液を取扱うため、比粘度共理論に採用した（例えば食醤水溶液では濃度 13.4% においては其値は 4% 程度である）。

以下掲載の各表中 \(c \) は溶液中の無水食塩の重量分率、\(\varepsilon_m \) は共分子分率、\(\gamma \) は比粘度及び \(r(1/1) \) は \((\nu-1)/(\gamma-1) \) を表す。

さて硫酸水溶液は極大極小値を併有する粘度曲線を示し、形式上では前報の一般粘度形式中 (Ⅴ) に属するが、一般溶液の項に論述した如く式 (4) の変形なる式 (11) によって取扱はるべきものである。第 14 表より見える如く濃度 82.5% までは各溶液の比粘度は略々等価であり、従て \(r=1 \) なる恒数を與へ。又濃度 78.9% 以上は \(r(60^\circ/25^\circ), r(75^\circ/25^\circ) \) の値は共に実験誤差と認められる然否の恒

71) 本誌、64（昭和 18）、1467、1468、（本報文の用語は特に第一報より通し番錦とする）。
* 前報においては誤植があった。共他誤訛文は本誌、65（昭和 19）、209 に掲載。
73) D. W. Kaufmann: Refrigerating Engineering, 1934, 306。
<table>
<thead>
<tr>
<th>体積比</th>
<th>温度（％）</th>
<th>平均値</th>
<th>温度（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0500</td>
<td>0.0056</td>
<td>1.09</td>
<td>1.07</td>
</tr>
<tr>
<td>0.0659</td>
<td>0.0187</td>
<td>1.17</td>
<td>1.18</td>
</tr>
<tr>
<td>0.1342</td>
<td>0.0270</td>
<td>1.26</td>
<td>1.30</td>
</tr>
<tr>
<td>0.1742</td>
<td>0.0373</td>
<td>1.38</td>
<td>1.48</td>
</tr>
<tr>
<td>0.2034</td>
<td>0.0459</td>
<td>1.46</td>
<td>1.50</td>
</tr>
<tr>
<td>0.2410</td>
<td>0.0551</td>
<td>1.46</td>
<td>1.68</td>
</tr>
<tr>
<td>0.2980</td>
<td>0.0724</td>
<td>1.88</td>
<td>2.00</td>
</tr>
<tr>
<td>0.3970</td>
<td>0.1079</td>
<td>2.48</td>
<td>2.62</td>
</tr>
<tr>
<td>0.6120</td>
<td>0.1616</td>
<td>3.80</td>
<td>3.97</td>
</tr>
<tr>
<td>0.6250</td>
<td>0.2345</td>
<td>6.42</td>
<td>6.31</td>
</tr>
<tr>
<td>0.7060</td>
<td>0.2901</td>
<td>12.0</td>
<td>10.1</td>
</tr>
<tr>
<td>0.7820</td>
<td>0.3793</td>
<td>14.0</td>
<td>16.5</td>
</tr>
<tr>
<td>0.8140</td>
<td>0.4487</td>
<td>15.4</td>
<td>12.4</td>
</tr>
<tr>
<td>0.8360</td>
<td>0.4818</td>
<td>16.3</td>
<td>13.3</td>
</tr>
<tr>
<td>0.8750</td>
<td>0.6923</td>
<td>20.3</td>
<td>20.2</td>
</tr>
<tr>
<td>0.9080</td>
<td>0.6935</td>
<td>26.0</td>
<td>19.1</td>
</tr>
<tr>
<td>0.9475</td>
<td>0.7683</td>
<td>24.9</td>
<td>18.7</td>
</tr>
<tr>
<td>0.9880</td>
<td>0.9139</td>
<td>29.7</td>
<td>21.5</td>
</tr>
<tr>
<td>0.9660</td>
<td>0.9786</td>
<td>25.8</td>
<td>19.5</td>
</tr>
</tbody>
</table>

溶質の溶け行く過程に就て（補遺一）

\[\log \eta = -1.128 + \frac{125.6}{T-182} \]

該式の誤差は 0℃ 以上においては第 15 表の如くである。

<table>
<thead>
<tr>
<th>℃</th>
<th>(\eta) poise × 10^{-1}</th>
<th></th>
<th>℃</th>
<th>(\eta) poise × 10^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.005</td>
<td>1.009</td>
<td>-5</td>
<td>2.153</td>
</tr>
<tr>
<td>15</td>
<td>1.141</td>
<td>1.140</td>
<td>-10</td>
<td>2.640</td>
</tr>
<tr>
<td>10</td>
<td>1.306</td>
<td>1.306</td>
<td>-15</td>
<td>3.350</td>
</tr>
<tr>
<td>5</td>
<td>1.515</td>
<td>1.514</td>
<td>-20</td>
<td>4.375</td>
</tr>
<tr>
<td>0</td>
<td>1.786</td>
<td>1.786</td>
<td>-25</td>
<td>5.357</td>
</tr>
</tbody>
</table>

第 16 表（其 1）食塩水溶液（Stakelbeck）

<table>
<thead>
<tr>
<th>(\delta_m)</th>
<th>(\gamma)</th>
<th>(\eta) poise × 10^{-1}</th>
<th>(\gamma) poise × 10^{-1}</th>
<th>(\gamma) poise × 10^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.134</td>
<td>0.0455</td>
<td>1.230</td>
<td>1.293</td>
<td>1.207</td>
</tr>
<tr>
<td>0.145</td>
<td>0.0407</td>
<td>1.263</td>
<td>1.244</td>
<td>1.346</td>
</tr>
<tr>
<td>0.156</td>
<td>0.0398</td>
<td>1.302</td>
<td>1.286</td>
<td>1.380</td>
</tr>
<tr>
<td>0.167</td>
<td>0.0382</td>
<td>1.344</td>
<td>1.337</td>
<td>1.336</td>
</tr>
<tr>
<td>0.179</td>
<td>0.0369</td>
<td>1.388</td>
<td>1.392</td>
<td>2.958</td>
</tr>
<tr>
<td>0.190</td>
<td>0.0364</td>
<td>1.434</td>
<td>1.449</td>
<td>1.462</td>
</tr>
<tr>
<td>0.201</td>
<td>0.0720</td>
<td>1.487</td>
<td>1.510</td>
<td>1.531</td>
</tr>
<tr>
<td>0.212</td>
<td>0.0766</td>
<td>1.543</td>
<td>1.576</td>
<td>1.603</td>
</tr>
<tr>
<td>0.223</td>
<td>0.0818</td>
<td>1.607</td>
<td>1.647</td>
<td>1.684</td>
</tr>
<tr>
<td>0.234</td>
<td>0.0817</td>
<td>1.611</td>
<td>1.656</td>
<td>1.690</td>
</tr>
<tr>
<td>0.235</td>
<td>0.0885</td>
<td>1.685</td>
<td>1.728</td>
<td>1.773</td>
</tr>
<tr>
<td>0.246</td>
<td>0.0769</td>
<td>1.774</td>
<td>1.814</td>
<td>1.869</td>
</tr>
<tr>
<td>0.256</td>
<td>0.0673</td>
<td>1.888</td>
<td>1.919</td>
<td>1.941</td>
</tr>
<tr>
<td>0.263</td>
<td>0.0662</td>
<td>1.923</td>
<td>1.968</td>
<td>1.968</td>
</tr>
</tbody>
</table>

第 16 表（其 2）食塩水溶液（Stakelbeck）

<table>
<thead>
<tr>
<th>(\delta_m)</th>
<th>(\gamma)</th>
<th>((1-\delta_m)^\nu \delta_m v)</th>
<th>(\gamma) poise × 10^{-1}</th>
<th>(\gamma) poise × 10^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.134</td>
<td>0.0465</td>
<td>1.213</td>
<td>1.24 × 10^2</td>
<td>1.05</td>
</tr>
<tr>
<td>0.145</td>
<td>0.0467</td>
<td>1.253</td>
<td>1.26 × 10^2</td>
<td>1.04</td>
</tr>
<tr>
<td>0.156</td>
<td>0.0629</td>
<td>1.297</td>
<td>1.28 × 10^2</td>
<td>1.02</td>
</tr>
<tr>
<td>0.167</td>
<td>0.0582</td>
<td>1.350</td>
<td>1.31 × 10^2</td>
<td>1.04</td>
</tr>
<tr>
<td>0.178</td>
<td>0.0383</td>
<td>1.413</td>
<td>1.381</td>
<td>1.35 × 10^2</td>
</tr>
<tr>
<td>0.190</td>
<td>0.0474</td>
<td>1.463</td>
<td>1.442</td>
<td>1.39 × 10^2</td>
</tr>
<tr>
<td>0.201</td>
<td>0.0720</td>
<td>1.547</td>
<td>1.510</td>
<td>2.50 × 10^4</td>
</tr>
<tr>
<td>0.212</td>
<td>0.0766</td>
<td>1.628</td>
<td>1.580</td>
<td>2.25 × 10^4</td>
</tr>
<tr>
<td>0.223</td>
<td>0.0813</td>
<td>1.707</td>
<td>1.656</td>
<td>2.19 × 10^4</td>
</tr>
<tr>
<td>0.224</td>
<td>0.0817</td>
<td>1.715</td>
<td>1.665</td>
<td>2.15 × 10^4</td>
</tr>
<tr>
<td>0.235</td>
<td>0.0865</td>
<td>1.809</td>
<td>1.751</td>
<td>2.15 × 10^4</td>
</tr>
<tr>
<td>0.247</td>
<td>0.0919</td>
<td>1.926</td>
<td>2.13 × 10^4</td>
<td>1.14</td>
</tr>
</tbody>
</table>
先づ食塩水溶液から吟味を始めよう。\(r (10^\circ/0^\circ) \), \(r (-5^\circ/0^\circ) \) 及び \(r (-10^\circ/0^\circ) \) の値は濃度 20\%を界として大略二等級に分けてあり, \(r (-15^\circ/0^\circ) \) は一定値を與へる。即ち -15\°C では二水和物の三重分子 (NaCl\cdot2H\textsubscript{2}O) \textsubscript{3} のみが存在し, この皆合分子は -10\°C ～ 0\°C においても濃度 20\%以上において存続するが, それ以下の稀薄溶液では二重分子 (NaCl\cdot2H\textsubscript{2}O) \textsubscript{2} となり, 更に 0\°C においては其存在範囲を拡大して木検討の全濃度間に及ぶ。恒常温以上では, 其一部を前報した如く, 40\°C までには濃度 15\%以下, 60\°C までには濃度 20\%以下の溶液中にて単分子狀態 NaCl\cdot2H\textsubscript{2}O と成ることを I.C.T.V. 15 の表より計算して明瞭となった。

溶解度曲線77) からは 0.15\°C 以下においては二水和物 NaCl\cdot2H\textsubscript{2}O（単斜晶形, 晶出温度範囲 0.15\°C ～ -21.1\°C）が晶出すに反し, それ以上の温度では無水物が晶出す見向が極めて微弱で, 両水和物の結晶への第一階式たる分子群は三重分子皆合が必要條件である。第 16 表共 1 及 2 参照。

第 17 表（其 1）

<table>
<thead>
<tr>
<th>(z)</th>
<th>(z_m)</th>
<th>(\eta)</th>
<th>(\frac{\eta - 1}{(1-z_m)^n z_m})</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.114</td>
<td>0.0238</td>
<td>1.58</td>
<td>1.64</td>
<td>1.70</td>
</tr>
<tr>
<td>0.123</td>
<td>0.0259</td>
<td>1.66</td>
<td>1.74</td>
<td>1.80</td>
</tr>
<tr>
<td>0.132</td>
<td>0.0280</td>
<td>1.75</td>
<td>1.83</td>
<td>1.88</td>
</tr>
<tr>
<td>0.141</td>
<td>0.0301</td>
<td>1.85</td>
<td>1.95</td>
<td>2.00</td>
</tr>
<tr>
<td>0.161</td>
<td>0.0326</td>
<td>1.97</td>
<td>2.08</td>
<td>2.11</td>
</tr>
<tr>
<td>0.161</td>
<td>0.0360</td>
<td>2.10</td>
<td>2.21</td>
<td>2.24</td>
</tr>
<tr>
<td>0.171</td>
<td>0.0376</td>
<td>2.24</td>
<td>2.34</td>
<td>2.37</td>
</tr>
<tr>
<td>0.181</td>
<td>0.0402</td>
<td>2.38</td>
<td>2.48</td>
<td>2.52</td>
</tr>
<tr>
<td>0.191</td>
<td>0.0428</td>
<td>2.54</td>
<td>2.66</td>
<td>2.70</td>
</tr>
<tr>
<td>0.203</td>
<td>0.0450</td>
<td>2.76</td>
<td>2.88</td>
<td>2.92</td>
</tr>
<tr>
<td>0.260</td>
<td>0.0468</td>
<td>2.85</td>
<td>3.00</td>
<td>3.05</td>
</tr>
<tr>
<td>0.211</td>
<td>0.0482</td>
<td>2.96</td>
<td>3.13</td>
<td>3.20</td>
</tr>
<tr>
<td>0.221</td>
<td>0.0510</td>
<td>3.20</td>
<td>3.37</td>
<td>3.52</td>
</tr>
<tr>
<td>0.223</td>
<td>0.0538</td>
<td>3.47</td>
<td>3.65</td>
<td>3.89</td>
</tr>
<tr>
<td>0.241</td>
<td>0.0567</td>
<td>3.78</td>
<td>4.00</td>
<td>4.29</td>
</tr>
<tr>
<td>0.251</td>
<td>0.0566</td>
<td>4.10</td>
<td>4.38</td>
<td>4.75</td>
</tr>
<tr>
<td>0.262</td>
<td>0.0529</td>
<td>4.49</td>
<td>4.81</td>
<td>5.26</td>
</tr>
<tr>
<td>0.272</td>
<td>0.0660</td>
<td>4.89</td>
<td>5.28</td>
<td>5.78</td>
</tr>
<tr>
<td>0.283</td>
<td>0.0665</td>
<td>5.37</td>
<td>5.83</td>
<td>6.40</td>
</tr>
<tr>
<td>0.294</td>
<td>0.0731</td>
<td>6.04</td>
<td>6.43</td>
<td>7.02</td>
</tr>
<tr>
<td>0.304</td>
<td>0.0763</td>
<td>6.71</td>
<td>6.91</td>
<td>7.70</td>
</tr>
<tr>
<td>0.316</td>
<td>0.0801</td>
<td>7.40</td>
<td>7.13</td>
<td>8.39</td>
</tr>
<tr>
<td>0.327</td>
<td>0.0842</td>
<td>8.25</td>
<td>8.29</td>
<td>9.17</td>
</tr>
<tr>
<td>0.339</td>
<td>0.0885</td>
<td>9.17</td>
<td>9.24</td>
<td>9.69</td>
</tr>
</tbody>
</table>

第17表（其2） 鹽化マグネシウム溶液 (Stakelbeck)

<table>
<thead>
<tr>
<th>ζ</th>
<th>2m</th>
<th>η</th>
<th>(1-ζm)^{-1}</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.114</td>
<td>0.0238</td>
<td>1.70</td>
<td>1.82 x 10^5</td>
<td>1.00</td>
</tr>
<tr>
<td>0.123</td>
<td>0.0259</td>
<td>1.78</td>
<td>1.77 x 10^5</td>
<td>0.99</td>
</tr>
<tr>
<td>0.132</td>
<td>0.0280</td>
<td>1.85</td>
<td>1.70 x 10^5</td>
<td>0.96</td>
</tr>
<tr>
<td>0.141</td>
<td>0.0301</td>
<td>2.02</td>
<td>1.63 x 10^5</td>
<td>0.94 x 1.02</td>
</tr>
<tr>
<td>0.151</td>
<td>0.0326</td>
<td>2.13</td>
<td>1.68 x 10^5</td>
<td>0.95 x 1.02</td>
</tr>
<tr>
<td>0.161</td>
<td>0.0350</td>
<td>2.21</td>
<td>1.75 x 10^5</td>
<td>0.98 x 0.98 x 0.98</td>
</tr>
<tr>
<td>0.171</td>
<td>0.0376</td>
<td>2.37</td>
<td>1.79 x 10^5</td>
<td>1.00 x 0.98</td>
</tr>
<tr>
<td>0.181</td>
<td>0.0402</td>
<td>2.56</td>
<td>2.22 x 10^5</td>
<td>1.03 x 1.00 x 0.92</td>
</tr>
<tr>
<td>0.191</td>
<td>0.0428</td>
<td>2.78</td>
<td>2.15 x 10^5</td>
<td>1.03 x 0.99 x 0.95</td>
</tr>
<tr>
<td>0.201</td>
<td>0.0455</td>
<td>3.04</td>
<td>2.13 x 10^5</td>
<td>1.06 x 1.01 x 0.94</td>
</tr>
<tr>
<td>0.206</td>
<td>0.0468</td>
<td>3.18</td>
<td>2.11 x 10^5</td>
<td>1.06 x 1.01 x 0.92</td>
</tr>
<tr>
<td>0.211</td>
<td>0.0482</td>
<td>3.30</td>
<td>2.08 x 10^5</td>
<td>1.05 x 1.01 x 0.94</td>
</tr>
<tr>
<td>0.221</td>
<td>0.0510</td>
<td>3.63</td>
<td>2.07 x 10^5</td>
<td>1.04 x 1.03 x 0.93</td>
</tr>
<tr>
<td>0.231</td>
<td>0.0538</td>
<td>4.04</td>
<td>2.13 x 10^5</td>
<td>1.05 x 1.05 x 0.92</td>
</tr>
<tr>
<td>0.241</td>
<td>0.0567</td>
<td>4.60</td>
<td>1.75 x 10^5</td>
<td>1.06 x 1.07 x 0.93</td>
</tr>
<tr>
<td>0.251</td>
<td>0.0596</td>
<td>5.05</td>
<td>1.73 x 10^5</td>
<td>1.08 x 1.11 x 0.95</td>
</tr>
<tr>
<td>0.262</td>
<td>0.0629</td>
<td>5.62</td>
<td>1.70 x 10^5</td>
<td>1.08 x 1.14 x 0.56</td>
</tr>
<tr>
<td>0.272</td>
<td>0.0660</td>
<td>6.34</td>
<td>1.72 x 10^5</td>
<td>1.11 x 1.16</td>
</tr>
<tr>
<td>0.283</td>
<td>0.0695</td>
<td>7.08</td>
<td>1.72 x 10^5</td>
<td>1.13 x 1.17</td>
</tr>
<tr>
<td>0.294</td>
<td>0.0731</td>
<td>7.98</td>
<td>1.68 x 10^5</td>
<td>1.11</td>
</tr>
<tr>
<td>0.304</td>
<td>0.0763</td>
<td>8.85</td>
<td>1.80 x 10^5</td>
<td>1.17</td>
</tr>
<tr>
<td>0.315</td>
<td>0.0801</td>
<td>9.77</td>
<td>1.63 x 10^5</td>
<td>1.19</td>
</tr>
<tr>
<td>0.327</td>
<td>0.0842</td>
<td>10.88</td>
<td>1.97 x 10^5</td>
<td>1.22</td>
</tr>
</tbody>
</table>

次に鹽化マグネシウム水溶液に就て考察する。

本系は無機塩類水溶液中，最復雑な例であるから，rは各濃度と温度のものを採用して粘度解柶を行ふことにより，20°，15℃及び0℃においては濃度19.1％までの溶液中では六水和物の二重分子（MgCl₂・6H₂O）に，24.1％以上の濃度で四重分子（MgCl₂・6H₂O）が存在し，この両者の間に僅かに三重分子（MgCl₂・6H₂O）が存在するものと， interpretation at 20°, 15℃, and 0℃ correspond to concentrations of 19.1% and above. The solution contains double molecules (MgCl₂・6H₂O) at concentrations of 24.1% and above. In the intermediate range with concentrations of 21.1% and below, both double molecules and triple molecules (MgCl₂・6H₂O) exist. For temperatures of -20°C and -15°C, the presence of double molecules (MgCl₂・8H₂O) is observed. From these results, a comprehensive study of the hydration behavior at temperatures of 20°C and 15°C and concentrations of 19.1% and above is carried out. The study provides insight into the molecular structure at various conditions. The results are published in the Journal of Chemical Physics.
−10℃まで延びてであること、0～20℃においてはMgCl₂•6H₂Oを形成することは既相と全く一致するものであると云び得る。

最後に酸化カルシウム水溶液に就いては20℃、10℃及び0℃において、濃度18.8%までは六水和物の二重分子(CaCl₂•6H₂O)₄が存在するが、夫れ以上の濃度では各温度によって共重合体数を異にし、20℃においては濃度19.8～29.9%、10℃及び0℃においては19.9～28.6%の間に三重分子(CaCl₂•6H₂O)₃を形成する、更に夫れ以上の高濃度において(CaCl₂•6H₂O)₄を形成するが、共濃度範囲は20℃においては30.7～36.1%、10℃及び0℃では27.6～29.9%である。向10℃及び0℃では30.7～36.1%の間で五重分子(CaCl₂•6H₂O)₅を形成する（第18表共1参照）、0℃以上においては異等重合分子の存在範囲は上記と異り、(CaCl₂•6H₂O)₆は−10℃～−15℃では濃度22.7%まで、(CaCl₂•6H₂O)₇は夫れより26.6%まで、(CaCl₂•6H₂O)₈は27.6～29.7%の間、それ以上の濃度においては(CaCl₂•6H₂O)₉を形成する。然し−20℃～−25℃においては(CaCl₂•6H₂O)₉が消滅し、(CaCl₂•6H₂O)₈及び(CaCl₂•6H₂O)₇の二種の共合状態となること第18表共2に見る通りである（但し−25℃の場合は掲載を省略した）。

第18表（共1）酸化カルシウム水溶液（Stakelbeck）

<table>
<thead>
<tr>
<th>#</th>
<th>ηm</th>
<th>η</th>
<th>(\eta - 1)</th>
<th>ρ</th>
<th>100/200</th>
<th>0/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.131</td>
<td>0.0239</td>
<td>1.361</td>
<td>1.341</td>
<td>1.361</td>
<td>9.18 \times 10^2</td>
<td>8.00 \times 10^2</td>
</tr>
<tr>
<td>0.141</td>
<td>0.0260</td>
<td>1.444</td>
<td>1.386</td>
<td>1.393</td>
<td>9.00 \times 10^2</td>
<td>7.82 \times 10^2</td>
</tr>
<tr>
<td>0.150</td>
<td>0.0279</td>
<td>1.503</td>
<td>1.431</td>
<td>1.442</td>
<td>9.08 \times 10^2</td>
<td>7.78 \times 10^2</td>
</tr>
<tr>
<td>0.160</td>
<td>0.0300</td>
<td>1.571</td>
<td>1.491</td>
<td>1.496</td>
<td>9.13 \times 10^2</td>
<td>7.86 \times 10^2</td>
</tr>
<tr>
<td>0.169</td>
<td>0.0320</td>
<td>1.640</td>
<td>1.562</td>
<td>1.563</td>
<td>9.23 \times 10^2</td>
<td>7.56 \times 10^2</td>
</tr>
<tr>
<td>0.178</td>
<td>0.0342</td>
<td>1.712</td>
<td>1.618</td>
<td>1.607</td>
<td>9.24 \times 10^2</td>
<td>8.02 \times 10^2</td>
</tr>
<tr>
<td>0.188</td>
<td>0.0362</td>
<td>1.751</td>
<td>1.693</td>
<td>1.675</td>
<td>9.44 \times 10^2</td>
<td>8.23 \times 10^2</td>
</tr>
<tr>
<td>0.198</td>
<td>0.0386</td>
<td>1.879</td>
<td>1.749</td>
<td>1.744</td>
<td>3.13 \times 10^3</td>
<td>2.74 \times 10^3</td>
</tr>
<tr>
<td>0.208</td>
<td>0.0409</td>
<td>1.972</td>
<td>1.859</td>
<td>1.823</td>
<td>3.05 \times 10^4</td>
<td>2.67 \times 10^4</td>
</tr>
<tr>
<td>0.218</td>
<td>0.0433</td>
<td>2.070</td>
<td>1.961</td>
<td>1.909</td>
<td>2.55 \times 10^4</td>
<td>2.62 \times 10^4</td>
</tr>
<tr>
<td>0.227</td>
<td>0.0465</td>
<td>2.186</td>
<td>2.062</td>
<td>1.970</td>
<td>2.92 \times 10^4</td>
<td>2.62 \times 10^4</td>
</tr>
<tr>
<td>0.237</td>
<td>0.0480</td>
<td>2.313</td>
<td>2.178</td>
<td>2.102</td>
<td>2.89 \times 10^4</td>
<td>2.50 \times 10^4</td>
</tr>
<tr>
<td>0.247</td>
<td>0.0506</td>
<td>2.460</td>
<td>2.250</td>
<td>2.37 \times 10^4</td>
<td>ϱ₁ = 18</td>
<td>—</td>
</tr>
<tr>
<td>0.257</td>
<td>0.0532</td>
<td>2.610</td>
<td>2.449</td>
<td>2.367</td>
<td>2.84 \times 10^4</td>
<td>ϱ₂ = 3</td>
</tr>
<tr>
<td>0.266</td>
<td>0.0566</td>
<td>2.762</td>
<td>2.602</td>
<td>2.522</td>
<td>2.87 \times 10^4</td>
<td>2.61 \times 10^4</td>
</tr>
<tr>
<td>0.276</td>
<td>0.0593</td>
<td>2.962</td>
<td>2.818</td>
<td>2.713</td>
<td>2.91 \times 10^4</td>
<td>6.56 \times 10^4</td>
</tr>
<tr>
<td>0.287</td>
<td>0.0613</td>
<td>3.301</td>
<td>3.067</td>
<td>2.933</td>
<td>2.95 \times 10^5</td>
<td>6.09 \times 10^4</td>
</tr>
<tr>
<td>0.297</td>
<td>0.0642</td>
<td>3.463</td>
<td>3.321</td>
<td>3.179</td>
<td>3.11 \times 10^5</td>
<td>6.71 \times 10^4</td>
</tr>
<tr>
<td>0.309</td>
<td>0.0681</td>
<td>3.542</td>
<td>3.380</td>
<td>3.284</td>
<td>3.12 \times 10^6</td>
<td>6.74 \times 10^4</td>
</tr>
<tr>
<td>0.310</td>
<td>0.0671</td>
<td>3.787</td>
<td>3.650</td>
<td>3.463</td>
<td>7.30 \times 10^6</td>
<td>1.57 \times 10^7</td>
</tr>
<tr>
<td>0.325</td>
<td>0.0704</td>
<td>4.068</td>
<td>3.906</td>
<td>3.768</td>
<td>7.27 \times 10^7</td>
<td>1.60 \times 10^7</td>
</tr>
<tr>
<td>0.330</td>
<td>0.0738</td>
<td>4.431</td>
<td>4.274</td>
<td>4.144</td>
<td>7.28 \times 10^7</td>
<td>ϱ₂ = 24</td>
</tr>
<tr>
<td>0.340</td>
<td>0.0772</td>
<td>4.780</td>
<td>4.686</td>
<td>4.563</td>
<td>7.32 \times 10^8</td>
<td>1.50 \times 10^7</td>
</tr>
<tr>
<td>0.351</td>
<td>0.0804</td>
<td>5.134</td>
<td>5.019</td>
<td>4.831</td>
<td>7.11 \times 10^8</td>
<td>1.50 \times 10^7</td>
</tr>
<tr>
<td>0.361</td>
<td>0.0841</td>
<td>5.514</td>
<td>5.395</td>
<td>5.531</td>
<td>7.45 \times 10^9</td>
<td>1.51 \times 10^7</td>
</tr>
</tbody>
</table>
第18表（共2） 鹽化カルシウム水溶液（Stakelbeck）

<table>
<thead>
<tr>
<th>z</th>
<th>η</th>
<th>η−1</th>
<th>(1−η)−1</th>
<th>η−1</th>
<th>η−1</th>
<th>r</th>
<th>η−1</th>
<th>η−1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.150</td>
<td>0.0279</td>
<td>1.519</td>
<td>9.37×10^6</td>
<td></td>
<td></td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.160</td>
<td>0.0300</td>
<td>1.569</td>
<td>9.47×10^6</td>
<td></td>
<td></td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.169</td>
<td>0.0330</td>
<td>1.647</td>
<td>9.33×10^6</td>
<td></td>
<td></td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.178</td>
<td>0.0342</td>
<td>1.706</td>
<td>9.16×10^6</td>
<td></td>
<td></td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.188</td>
<td>0.0362</td>
<td>1.768</td>
<td>9.12×10^6</td>
<td></td>
<td></td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.198</td>
<td>0.0385</td>
<td>1.848</td>
<td>9.17×10^6</td>
<td></td>
<td></td>
<td>1.14</td>
<td>1.08</td>
<td>0.916</td>
</tr>
<tr>
<td>0.208</td>
<td>0.0409</td>
<td>1.929</td>
<td>9.18×10^6</td>
<td></td>
<td></td>
<td>1.14</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>0.218</td>
<td>0.0433</td>
<td>2.014</td>
<td>9.19×10^6</td>
<td></td>
<td></td>
<td>1.13</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>0.228</td>
<td>0.0455</td>
<td>2.094</td>
<td>9.18×10^6</td>
<td></td>
<td></td>
<td>1.12</td>
<td>1.02</td>
<td>0.916</td>
</tr>
<tr>
<td>0.238</td>
<td>0.0480</td>
<td>2.174</td>
<td>9.19×10^6</td>
<td></td>
<td></td>
<td>1.11</td>
<td>1.01</td>
<td>0.918</td>
</tr>
<tr>
<td>0.247</td>
<td>0.0506</td>
<td>2.256</td>
<td>2.62×10^6</td>
<td>1.28</td>
<td>1.28</td>
<td>1.10</td>
<td>1.02</td>
<td>0.925</td>
</tr>
<tr>
<td>0.257</td>
<td>0.0532</td>
<td>2.358</td>
<td>2.40×10^6</td>
<td>1.24</td>
<td>1.24</td>
<td>1.09</td>
<td>1.02</td>
<td>0.930</td>
</tr>
<tr>
<td>0.266</td>
<td>0.0556</td>
<td>2.361</td>
<td>2.69×10^6</td>
<td>1.27</td>
<td>1.27</td>
<td>1.09</td>
<td>1.01</td>
<td>0.932</td>
</tr>
<tr>
<td>0.275</td>
<td>0.0583</td>
<td>2.859</td>
<td>2.74×10^6</td>
<td>1.57</td>
<td>1.57</td>
<td>1.09</td>
<td>1.00</td>
<td>0.935</td>
</tr>
<tr>
<td>0.287</td>
<td>0.0613</td>
<td>3.082</td>
<td>2.98×10^6</td>
<td>1.74</td>
<td>1.74</td>
<td>1.08</td>
<td>0.999</td>
<td>0.962</td>
</tr>
<tr>
<td>0.297</td>
<td>0.0642</td>
<td>3.344</td>
<td>3.26×10^6</td>
<td>1.53</td>
<td>1.53</td>
<td>1.08</td>
<td>0.999</td>
<td>0.968</td>
</tr>
<tr>
<td>0.307</td>
<td>0.0671</td>
<td>3.722</td>
<td>3.63×10^6</td>
<td>1.50</td>
<td>1.50</td>
<td>1.08</td>
<td>1.00</td>
<td>0.964</td>
</tr>
<tr>
<td>0.318</td>
<td>0.0704</td>
<td>4.006</td>
<td>3.91×10^6</td>
<td>1.56</td>
<td>1.56</td>
<td>1.11</td>
<td>0.999</td>
<td>0.968</td>
</tr>
<tr>
<td>0.329</td>
<td>0.0738</td>
<td>4.395</td>
<td>4.48×10^6</td>
<td>1.52</td>
<td>1.52</td>
<td>1.09</td>
<td>1.00</td>
<td>0.977</td>
</tr>
<tr>
<td>0.340</td>
<td>0.0772</td>
<td>4.877</td>
<td>1.58×10^6</td>
<td></td>
<td></td>
<td>1.10</td>
<td>1.02</td>
<td>0.982</td>
</tr>
<tr>
<td>0.351</td>
<td>0.0807</td>
<td>5.375</td>
<td>1.69×10^6</td>
<td></td>
<td></td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: この如く塩化カルシウム水溶液は塩化マグネシウム水溶液と異なり、溶解度曲線の示す如く本

80) MgCl₂·6H₂O は单結晶系（d=1.568）であるに反し、CaCl₂·6H₂O は方結晶系（d=1.7182）である。