6. 結果の考察
以上の結果から略を表に認められるのは、次のようである。

(1) 抵抗値測定と高密度の関係は概ね直線的である。
(2) 抵抗値に対する吸湿の影響は、弱く認められな

(但し、これらの結果は、総て吸湿性が小さいこと
に注意)。

(3) 大気と小気とを比較すると、小気の抵抗値測定
高密度測定は、大気のそれに比べて、高密度低い方へ平
行移動した形になる。換言すれば、同一高密度では、小
気より大気の方が抵抗値が大きい。

各種実験のデータを基にした実験結果とその製造方法とを比
較すると、大気のカーボンプラックと東海電気カーボンプ
ラックは、不完全蒸発の様であって、不完全蒸発部
分を含む、その抵抗が高いのは、含有分解炭化分の為と
考えられる。

電気アセテレンプラック及び電化アセテレンプラック
は、いずれも高電流中で完全炭化される。抵抗値は小さい。
東海カーボンプラックは、高密度は著しく大きい。

特別の場合は、測定の再現性が他に比べて悪く、II、抵抗
値測定と高密度関係が異なる場合があるものと思、試
料が2種の粉末の混合物から成っているためではないか
と考えられる。

7. 結 言
炎素微粉末の自由堆積状態の密度と電気
抵抗値との関係は、一般に再現性は良くないけれども、各
種粉末間の差別を加える目的には充分な結果を現
わす。尚、再現性が悪いのは、電気差測定用電極間の間
隔が短かい、従って、試料内にある粉末の複雑な組織
が影響を及ぼすためである。この問題を大るとすれば、再
現性良好なるものと思われる、試料を液中

(第3報) 自由堆積状態粉体抵抗の種
型的考察及び実験結果
1. 序 前報では、炎素微粉末の自由堆積状態に於け
る電気抵抗と高密度の関係を測定することを提案し、カ
ーボンプラック類について測定結果を報告したが、今報
では、その際に得られた事実の解釈を試みると共に、実
用を受けるカーボンプラック製造、ピッチャーコックス製
粉などについての測定を行い、自由堆積状態粉体抵抗
について更に知見を挙げることに努めた。

2. 粉体抵抗の模型的考察
微粉末に堆積状態は、
非常に複雑であると考えられ、その場合の抵抗と堆積様
式との関係を考えることは難かしいであろうが、比較的
単純な堆積様式を模型とし、その抵抗を考えることは、
複雑な場合をうまくがうに便宜となるであろう。
粒子がすべて等大の球である場合を考え、1個の球が他の何個の球と接するかに従って、これを何個充満と呼ぶことにすると、幾何学的に単純な規則正しい堆積様式として、6個充満、8個充満、10個充満、12個充満が考えられ、これらの堆積の密度は、球の直径比 \(d \)、間隔率 \(\eta \)、体積比 \(\alpha \) とすると

\[
d = \alpha \eta
\]

で表わされ、\(\alpha \) は変える場合、1/6、1/3、2/9、2/6 となると。従って、同じ堆積様式では、粒子の大きさは規則度に影響される。

次に抵抗を算出するに当って、各球粒子の一つの接触点の抵抗は常に同じと仮定する。即ち、球の大きさに、堆積様式、従って1個の球に生ずる接触点の数にも何等影響されないとする。抵抗がかつておる変態として自由堆積状態を考えるのであるから、かく仮定しても良いと考えられる。更に、粒子の内部抵抗は多くの場合、抵抗抵抗に比して無視しうることが多い。

まず、6個充満の場合を考えると、1個の球が前後左右上下に6個の球と接する場合で、その一辺が直角に等価な場合に同じく、粒子の内部抵抗を \(R_{i} \)、接触抵抗を \(R_{c} \) とし、接触内の方向の球の数を \(n_{1}, n_{2}, n_{3} \) とすると、同一 \(a \) 間の一の接触抵抗の抵抗 \(R_{i} \) は、

\[
R_{i} = n_{1}(R_{c} + R_{i})
\]

（1）

この抵抗抵抗は、一辺毎に、他の抵抗抵抗と抵抗 \(R_{i} \) を別して結びつけられているが、結果には同じ等である限り等価にあって、抵抗の計算に、この結びつきは無関係となる。

\(R_{i} \) なる抵抗抵抗は、深さ方向の球の列に対して一本ずつ考えられ、これらは列列になってしまっているから、全抵抗 \(R \) は、

\[
R = \frac{n_{1}(R_{c} + R_{i})}{n_{1} + n_{2}}
\]

6個充満では、\(n_{1} = n_{2} = n_{3} = \frac{1}{2} \)（球の半径）

\[
R = \frac{2(R_{i} + R_{c})}{R_{c}}
\]

（2）

同様にして、8個充満、10個充満、12個充満の場合も考えられるが、球内抵抗を省略し、8個充満のとき、二つの方向に対し各々、

\[
R_{1} = \frac{2}{3}R_{c}, \quad R_{2} = \frac{1}{3}R_{c}
\]

10個充満の場合は、

\[
R = 2R_{c}
\]

（3）

12個充満の場合の二つの方向が考えられて、

\[
R_{1} = \frac{1}{2}R_{c}, \quad R_{2} = \frac{1}{10}R_{c}
\]

（4）

[A]式に従えば、密積度は同じ充排様式の場合、粒子の大きさに依存せぬが、[B]式に従えば、抵抗は同じ充排様式の場合、粒子の大きさに比例する。

この模型的考察の結論は、前節で得られた結果の一つであるところ、同種粒子の自由堆積状態抵抗を同じ密積度で比較すると、小粒（小さい部分）から成る粒子の抵抗は大粒（大きい部分）からなる粒子の抵抗より小さいと言える事実と言えよう。

第1図 6個充満の場合の等価回路

3. 素粒子の自由堆積状態抵抗 前節の模型的考察では、粒子間の接触抵抗が大粒でも小粒でも同じであると考えた。実際には、粒子が完全に球であり、抵抗が加わっておらず、接触点が接触面の中にあるときは、抵抗が加わっておらず、粒子間接触抵抗は完全な接触抵抗ではないと言わざるを得ないと思われる。また、粒子間接触抵抗は完全な接触抵抗ではないと言わざるを得ないと思われる。

これに対して、密積度の低いものを示す。ビッチクーロス（川西側）を密積状態にして得たものを対象の試料とし、自製の真空筒（500℃）に加熱し、300℃に移動したものは、粒子抵抗を第二の試料とし、両者についての電気抵抗と密積度の関係を測定した結果を第2、3 図に示した。

ビッチクーロス粉の場合には、前節のカーボンプラック類の場合と同じく、同じ密積度では、大粒の方が小粒よりも抵抗値が大きいと言う事実が、密積度の低い範囲にわたって示される。故に、自製炭素粉の場合には、わずかに低密積度の部分に於てのみこの関係が見られ、多くの場合、逆の場合に近い。

密積度で粒子の粒径を検査すると、共に不規則多角形粒子であるが、ビッチクーロス粉は軟質で、下粒を多く、B、粒子中に微細な粒子が含まれている。炭素粒子の場合は、粒が硬質なため微細な表面を示して突
（1）液浸による抽出洗浄の影響 日浸アセチレンプラッドと日浸カーボンプラッドを、先ずソックスレー抽出器に各製造炭素を適用し、洗浄については水によっても、抽出を行ない、いずれの場合も何等抽出物は認められず、ただ容末の液浸に於ける浸漬と洗浄が行われるのみである。これを取出し乾燥すると一帯なるから、適度に浸漬して32メッシュを通過する部分をとり、抵抗密度関係を測定した。結果は第4、5図中に示した。

抵抗値数と抵抗密度の関係は、いずれも直線となる。いずれの場合にも、前項の場合の無处理の容末に比し、直線は僅かに抵抗密度の方が細くなっている。これは粉末の粉末が増加するためである。日浸カーボンプラッドの場合、四酸化炭素と水による影響の差は僅かである。

容末粒子間に含まれた油沬が浮遊するに従ってその厚みを減じ、そのために油と接触している粒子同士は互に接触をし、抵抗密度を増加せしめたものと考えられる。

第4図　吸着炭素の抵抗密度関係
（A）日浸アセチレンプラッド

4. 处理をうけたカーボンプラッド粉末の抵抗 カーボンプラッド等の微粒子が、その使用上様々な処理をうけると、その微細粒化が促進して、従って抵抗及び密度の関係も変化することが想定される。この点について、若干の知見をうるため、下記の実験を行った。

（1）液浸による抽出洗浄の影響 日浸アセチレンプラッドと日浸カーボンプラッドを、先ずソックスレー抽出器にて四酸化炭素により、後者については水によっても、抽出を行ない、いずれの場合も何等抽出物は認められず、ただ容末の液浸による浸漬と洗浄が行われるのみである。これを取出し乾燥すると、一帯なるから、適度に浸漬して32メッシュを通過する部分をとり、抵抗密度関係を測定した。結果は第4、5図中に示した。

抵抗値数と抵抗密度の関係は、いずれも直線となる。いずれの場合も、前項の場合の無處理の容末に比し、直線は僅かに抵抗密度の方が細くなっている。これは粉末の粉末が増加するためである。日浸カーボンプラッドの場合、四酸化炭素と水による影響の差は僅かである。

容末粒子間に含まれた油沬が浮遊するに従ってその厚みを減じ、そのために油と接触している粒子同士は互に接触をし、抵抗密度を増加せしめたものと考えられる。
第5図 溶融状態の密度分布
(B) 日石カーボンプラック

→ 溶融密度 g/cc
(1) 融解密度
(2) CCl₄ 濃度
(3) H₂O 濃度
(4) 鋼 厚さ
(5) 同上 (水を含め密度算出)
(6) 同上 (水を含め密度算出)

となる。この場合、融解したままの溶密度または、水を
除いて炭素のみの密度をとして計算して比較することも
出来る。第4, 5図中に、これからの結果を示した。
溶融アセチレンプラックの場合、水 52.8% を含む
だが、水の介在は、粒子間の接続を妨げるよりも、むし
ろ粒子を互に接近させ、無処理粉末に比してその溶密
度を僅かに増大し、抵抗を低下している。
日石カーボンプラックでは、水 30% を含んだが、抵
抗及び密度に対する影響は小さく、むしろ、溶密度の減
少の傾向を示している。これらの差は、粒子の粒径作
る傾向の強さに原因していると考えられる。
ベンゼンにより測定された融解度、日石アセチレンプ
ラックでは 1.74, 日石カーボンプラックでは 1.72 で
大差ないが、自由凝集状態最密度は、前者 0.09 後
者 0.155 である。特にして前者は 70 メッシュ
篩を通せず、後者は大部分通過する。これらのことか
ら、前者の方が粒子を作る傾向が強いことが示り、従
って前者では融解中に毛細管状構造をもち、その中に含
まれた気体の表面張力により、融解の収縮、従ってその
高密度の増加と考えられる。後者では、粒子構造
発達せず、密度は粒子間に一定に含まれ、粒子を隔て、
融密度を減少せしめる傾向を現わすものと考えられる。
(3) ボールミルによる機械的衝撃の影響：粉末を融解
ボールを入れたボールミル（融解 6 時間）にかけると、
融解はボールに押され、融解して溶解する。20g
の粉末を 17 時間処理して、析出して乳鉢で碎き、
70 メッシュ篩を通過する粉末について測定を行った。測
定結果は第4, 5図中に示した。日石カーボンプラッ
ク、日石カーボンプラックの密度共、著しく密度が増
加しているのは、特に密度が増加したためと考えられる
が、抵抗は大差無体積も大きくにある。
以上の各密度から共通に考えられることは、粉末を構
成する粒子々々の密度が増加すると、抵抗値に対し溶密
度関係直線が溶密度高い方へずれること。すなわち、粒子
密度の溶密地域では、密度の小さい粉末から成るものよ
リ密度の大きい粉末から成るものの方が抵抗値が大きい
ことである。
このことは、自由凝集状態粉末の抵抗は、主として粒
子間の接触抵抗から成り、粒子（燃料）内部の抵抗は、
これに寄して小さい割合しか占めていないと考え、従つ
て、粒子の密度が増加することは、溶密度の増加に際
するこれによる粉末抵抗の減少は小さく、粒間接触抵抗に比して殆ど無視出来、従って抵抗は
殆ど変らず、溶密度のみ増加したと考えられる。この
場合には、これに比して、溶密に内部密度は増加し、
粒内抵抗は減少したと見られるが、溶密度のみ増加し、
抵抗は粒径密度の値に留まっていることは、抵抗は粒間抵抗
に主として支配され、しかもその粒間抵抗は、殆どの内部
密度に依存しないためと考えられる。

1. 結論 自由凝集状態粉末の抵抗についての以上の考
察及び実験は、未だ表面的に過ぎず、更に詳しい検討
を行えば本質は充分つかめないと、これに主に粒子の
接触抵抗に基づき、従って粒子の表面状態に依存深いも
のであることを推測することが出来る。

文献
1) E. Marangold, R. Hofmann, K. Solf, Koll. Z., 36, 142 (1931).
3) 古野浩夫, 日立評論, 1, 2 (1948).