ミドの値に近いので、上述の見解は十分妥当と思う。
NH₃ 基の変角振動による吸収帯は 1600 cm⁻¹、1100 cm⁻¹ の値に近い 1 個観測されるはずである。HCONH₂ の場合は 720 cm⁻¹ の吸収帯が NH₃ 基の変角によるものであることが、重水素化⁵の実験より明らかになったので、このオキサミドの場合は 788 cm⁻¹ の吸収帯を NH₃ 基の変角振動による第 3 の吸収帯とした。

オキサミドの内部変換ポテンシャル

オキサミドもジアセチルの場合¹と同様に立体障害、静電気力、及び二重結合の共鳴による共鳴エネルギーが内部変換ポテンシャルを決定する主な因子と考えられる。結晶中では分子間力がこれに加わるが、オキサミドでは強い水素結合が形成されている（これは NH₃ 伸縮振動の波形より明らかである）ので、その結合エネルギーの寄与も無視しきれない。先ず立体障害について大略の検討を行うために、二つの変換基の van der Waals 半径の重なり（第 3 図）をしらべてみると、トランス型、中間型、および重なりが小さいが、シス型ではそれほど大きくない。そこで立体障害の点ではトランス型、中間型がシス型より安定になると考えられる。

アミド分子 \(O\text{C}-\text{O} \) においてアミド基の双極子能率は約 3.5 D であり、その方向は（芳香族アミドの場合）C-C 軸と約 70° の角度をなすとする Bates, Hobbs²。

* 原子間距、原子実角はアセトアミドの価をもとにえた。

は結論している。これがそのままオキサミドにも大略成立するならば、両方のアミド基の間の静電気力によりトランス型は他の型よりもはるかに安定化されることとなる。又二重結合の共鳴による共鳴エネルギーの点でもトランス型が中間型より安定になる傾向を示す。オキサミド分子は結晶状態でトランス型として存在するが、これのトランス型は分子間力以外の各種因子については最も安定な分子型である。分子間水素結合については結晶内の分子の配列が、未だ十分に明らかにされていないので十分に検討することが出来ないが、この物質の結晶が極めて安定であることを考えると、トランス型が水素結合形成の上でも有利な條件となっていると思われる。

本研究に終始御指導を賜わった本島三一郎教授、島内正雄教授、市崎敬之助教授、倉谷健治助教授、また有益な御言を賜った常盤栄一学士に厚く感謝申し上げる。

（名古屋大学理学部化学教室、名古屋市千種区） 昭和 28 年 7 月 15 日受理

塩類に関する研究（第 7 報）

塩化アンモニウムの塩の安定度に対する有機蒸気の影響

藤谷義保

塩類の安定度は種々の因子により支配されるが、第 2 目論は共存すればその種類及び濃度により安定度が種々影響される。前報においては塩化アンモニウム溶液の鉱に種々の有機蒸気を添加した場合、塩の安定度が如何に変化するかを実験し、引続いて添加有機蒸気の作用機制についても推論した。本報においては塩化アンモニウムの塩に種々の有機蒸気を添加した場合、塩の安定度が如何に影響されるのを見ることを研究した。

塩化アンモニウムの塩の安定度に対する添加蒸気の作用の方法については、まずこれというとは端としていない。例えば、Rumianzewa⁴は表面活性物質の蒸気、Ssmochwalow 等⁵は水、オクチルアルコール、

1) 藤谷, 本島, 73, 817 (1932) (第 4 報).
2) 藤谷, 本島, 74, 651 (1933) (第 5 報).
3) 藤谷, 本島, 74, 704 (1933) (第 6 報).
Smirow6) はイソアミルアルコールの蒸気がそれぞれ
塩化アンモニウムの煙を安定化すると述べているが、一
方酸性、水は酸化的に作用する結果を得ており、立花
はノートル、ニトロペンゼン等の蒸気が塩化アンモニ
ウムの煙の安定度に殆ど変化を与えないと結論してい
る。

著者は以上の点を留意し、塩化アンモニウムの煙にメ
タノール、エタノール、アセトン、酢酸エチルアルコール、
ペンゼン、二硫化炭素、硝酸及び水の 8 種の蒸気を種々
の濃度に添加した場合、塩の安定度が如何に影響される
ものかを実験した。安定度を表す尺度としては煙界面
の沈降速度の大きさを比較することにより粒の成長の度
合を知り、併せて老化による帯電粒子の占める割合の変
化をも測定し、添加蒸気が帯電粒子に如何に作用するかそ
の機構についても考察した。

実験方法
塩化アンモニウムの煙の製造当っては再現性を保つ
ために製造条件が出来る限り一定になるように操作し
た。製造装置を第 1 図に示した。即ちコンプレッサーか

塩酸ガスを吸収するためである。このようにして得られ
た煙を煙箱*2 に 1.5 分間充填した。塩酸ガス、塩化アンモニ
ウム水、反応槽及び 3 本の洗気槽の入っている恒温槽の温
度は 15℃ である。

煙箱中に充填された煙は擁挙器により 60 回/min の
速度で 3 分間攪拌老化したのも擁挙器をとめ、その時間
を沈降開始の時間として沈降界面の沈降速度を測定し
た。添加物の影響を調べる場合には烟を煙箱に 1.5 分間
充填した直後に目盛付雲吹で液状有機物を煙箱に吹込
み、前と同様 3 分間攪拌老化し、沈降界面の沈降速度を
測定した。添加物質のない場合について煙の沈降速度
の沈降速度を測定した結果を示せば第 2 図のようになる。

2 図において縦軸は煙箱の上端からの沈降界面の沈降距離
を、横軸は沈降時間がとられているが、実測結果より沈
降界面の沈降速度はその上へより容易に変化する。第 2 図
において実測点の山は同一条件下で製造された煙について、
5 回の測定中現れた最大値と最小値の示すものである
(同一の煙についての測定値は原点を通る直線上に乗
っている)。添加物の共存する場合においても沈降界面
の沈降速度は直線的であることを確かめた。このように沈降
界面の沈降速度を測定し、界面を形成する粒子の大きさを
ストークスの式から計算すれば帯電粒子の表面積 (2 乗) 平
均半径が求まる。従って、添加物の有無により 3 分間
の攪拌老化後、煙界面の沈降速度を測定し、それぞれの
表面積平均半径が R 及び R0 であることが判れば、添加
蒸気が帯電粒子の生長に及ぼす影響の程度は R/R0 の値
の大小で表すことが出来る (沈降界面の沈降速度の
測定方法及びその意義に関する詳細は文献 8) を参照
されたい。}

塩化アンモニウムの煙を煙箱中において一定速度で攪
拌老化した場合、煙箱に含まれる帯電粒子の割合が如何
に変化するか、また、添加蒸気が共存するばその種類と

4, 101 (1929).
7) 立花, 本誌 68, 53 (1947).
濃度により如何なる差異を生ずるかを観測した。帯電粒子は2枚の電極を具えた限界電極セル内での挙動により正負の種類が判別されるが、同時に中性粒子の全数を積算し、正、負の帯電粒子の占める割合（パーセント）を求めた。使用した装置、その操作法に関しては前報に記載したのでここでは省略する。

実験結果

I. 沈降界面の沈降速度から得られた結果

測定結果を整理して示す第1表のこととなった。

第1表

<table>
<thead>
<tr>
<th>添加物質</th>
<th>実験温度(℃)</th>
<th>添加量 (cc)</th>
<th>添加濃度 (m. mole/l)</th>
<th>-α</th>
<th>(\frac{r}{r_0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>メタノール</td>
<td>15.2</td>
<td>1.02</td>
<td>1.88</td>
<td>0.268</td>
<td>1.13</td>
</tr>
<tr>
<td>エタノール</td>
<td>14.9</td>
<td>0.47</td>
<td>0.60</td>
<td>0.218</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>0.83</td>
<td>1.06</td>
<td>0.341</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>14.7</td>
<td>0.20</td>
<td>0.15</td>
<td>0.076</td>
<td>1.04</td>
</tr>
<tr>
<td>酸化エチルエストル</td>
<td>15.3</td>
<td>1.58</td>
<td>1.21</td>
<td>0.295</td>
<td>1.14</td>
</tr>
<tr>
<td>アセトン</td>
<td>14.8</td>
<td>0.97</td>
<td>1.02</td>
<td>0.272</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>1.54</td>
<td>1.60</td>
<td>0.335</td>
<td>1.16</td>
</tr>
<tr>
<td>二硫化炭素</td>
<td>15.0</td>
<td>0.57</td>
<td>0.71</td>
<td>0.331</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>15.3</td>
<td>2.15</td>
<td>2.68</td>
<td>0.656</td>
<td>1.29</td>
</tr>
<tr>
<td>ペンゼン</td>
<td>15.1</td>
<td>0.48</td>
<td>0.40</td>
<td>0.396</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>15.5</td>
<td>1.53</td>
<td>1.29</td>
<td>0.523</td>
<td>1.24</td>
</tr>
<tr>
<td>酢酸</td>
<td>15.2</td>
<td>0.35</td>
<td>0.46</td>
<td>0.422</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>0.50</td>
<td>0.79</td>
<td>0.647</td>
<td>1.28</td>
</tr>
<tr>
<td>水</td>
<td>14.8</td>
<td>0.31</td>
<td>1.29</td>
<td>0.494</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>0.58</td>
<td>2.20</td>
<td>0.580</td>
<td>1.26</td>
</tr>
</tbody>
</table>

*（一）は凝縮作用を表す。

表中の第2欄には実験を行った温度範囲、第3欄には目盛付試験により蒸気を吹込んだ有機物の体積（約13℃）、第4欄には添加物の蒸気中の濃度（mole/l）をそれぞれ記載した。第5欄の\(\frac{r}{r_0} \) 及び第6欄の\(\frac{r}{r_0^*} \) はいずれも安定度を表すパラメータである。パラメータ\(r/r_0 \) の意味については実験方法の項で述べたが、\(r/r_0^* \)（構造）と添加蒸気の濃度（横軸）との間の関係を図示すれば第3図が得られる。この結果によれば添加蒸気はいずれに凝縮的に作用していることが判る。

2. 帯電粒子の占める割合の老化による変化

塩化アンモニウムの蒸気を蒸気の中で凝縮老化した場合、帯電粒子が如何に増減するか、またその際に有機蒸気を添加すれば如何なる差異を呈するかを明らかにし、それらの結果から添加蒸気の蒸気に対する作用機構をもうかがおうと試みた。測定は10分毎に蒸気から蒸気試料を採取し限界電極のセル中で900～100個の帯電粒子を観測し、その中に含まれている正、負帯電粒子の占めるパーセント
<table>
<thead>
<tr>
<th>添加蒸気</th>
<th>添加濃度 (m.mole/l)</th>
<th>老化時間 (分)</th>
<th>(b_+) (％)</th>
<th>(b_-) (％)</th>
<th>(a_+)</th>
<th>(a_-)</th>
<th>(s_a)</th>
<th>(r/r_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アセトン</td>
<td>1.42</td>
<td>30</td>
<td>9.5</td>
<td>10.5</td>
<td>0.084</td>
<td>0.268</td>
<td>0.180</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>1.56</td>
<td>60</td>
<td>12.5</td>
<td>18.7</td>
<td>0.018</td>
<td>0.240</td>
<td>0.212</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>2.18</td>
<td>50</td>
<td>12.5</td>
<td>12.5</td>
<td>-0.016</td>
<td>0.296</td>
<td>0.312</td>
<td>1.17</td>
</tr>
<tr>
<td>プチアルコール</td>
<td>7.9</td>
<td>30</td>
<td>11.7</td>
<td>11.3</td>
<td>0.192</td>
<td>0.254</td>
<td>0.228</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>60.1</td>
<td>50</td>
<td>10.2</td>
<td>11.4</td>
<td>0.036</td>
<td>0.264</td>
<td>0.228</td>
<td>1.12</td>
</tr>
<tr>
<td>ベンゼン</td>
<td>0.54</td>
<td>30</td>
<td>9.0</td>
<td>12.2</td>
<td>0.062</td>
<td>0.135</td>
<td>0.073</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>1.04</td>
<td>60</td>
<td>8.0</td>
<td>8.2</td>
<td>0.058</td>
<td>0.103</td>
<td>0.105</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>30</td>
<td>11.0</td>
<td>11.7</td>
<td>0.052</td>
<td>0.292</td>
<td>0.210</td>
<td>1.22</td>
</tr>
<tr>
<td>酚 酸</td>
<td>0.13</td>
<td>30</td>
<td>11.8</td>
<td>14.0</td>
<td>0.020</td>
<td>0.324</td>
<td>0.304</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>60</td>
<td>11.1</td>
<td>11.9</td>
<td>0.000</td>
<td>0.414</td>
<td>0.324</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td>30</td>
<td>10.6</td>
<td>14.2</td>
<td>-0.010</td>
<td>0.319</td>
<td>0.329</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>60</td>
<td>11.6</td>
<td>12.1</td>
<td>0.014</td>
<td>0.426</td>
<td>0.412</td>
<td>1.12</td>
</tr>
</tbody>
</table>

実験結果はすべて \(a_+ \), \(a_- \) 及び \(b_+, b_- \) の 4 つについて値の大小により比較することができる。全実験結果をこれらの数値により整理すれば第 2 表が得られる。表中の第 2 表には有機蒸気の添加濃度を、第 3 表には関係老化のそれぞれその二表を示す。第 4 表の (a) は有機蒸気を全く添加しなかった場合で、(b), (c), (d) はそれぞれ有機蒸気 (添加濃度: 1.54 m. mole/L), ベンゼン (添加濃度: 0.90 m. mole/L), 酚酸 (添加濃度: 0.28 m. mole/L) を各濃度に添加した場合を示したものである。第 4 表において正、負電気子に関する 1 系列の実験値はいずれも直線上に乗っているように思われるが、各実験値を直接化し最小 2 観測法によりその勾配を計算し、更に老化時間 0 分におけ る正、負電気子の占めるパーセントを求めた。即ち、正、負電気子における勾配を \(a_+ \), \(a_- \) として、老化時間 0 分及び 60 分における等電位子の占めるパーセントを \(b_+ \), \(b_- \) 及び \(b_+, b_- \) とすれば下の 2 式が成立する。

\[
\begin{align*}
\text{実験結果はすべて} & & \text{正電荷子} & & \text{負電荷子} \\
\text{正電荷子} & & \text{負電荷子} & & \text{負電荷子}
\end{align*}
\]

実験結果はすべて \(a_+ \), \(a_- \) 及び \(b_+, b_- \) の 4 つについて値の大小により比較することができる。全実験結果をこれらの数値により整理すれば第 2 表が得られる。表中の第 2 表には有機蒸気の添加濃度を、第 3 表には関係老化のそれぞれその二表を示す。第 4 表の (a) は有機蒸気を全く添加しなかった場合で、(b), (c), (d) はそれぞれ有機蒸気 (添加濃度: 1.54 m. mole/L), ベンゼン (添加濃度: 0.90 m. mole/L), 酚酸 (添加濃度: 0.28 m. mole/L) を各濃度に添加した場合を示したものである。第 4 表において正、負電気子に関する 1 系列の実験値はいずれも直線上に乗っているように思われるが、各実験値を直接化し最小 2 観測法によりその勾配を計算し、更に老化時間 0 分におけ る正、負電気子の占めるパーセントを求めた。即ち、正、負電気子における勾配を \(a_+ \), \(a_- \) として、老化時間 0 分及び 60 分における等電位子の占めるパーセントを \(b_+ \), \(b_- \) 及び \(b_+, b_- \) とすれば下の 2 式が成立する。

\[
\begin{align*}
\text{実験結果はすべて} & & \text{正電荷子} & & \text{負電荷子} \\
\text{正電荷子} & & \text{負電荷子} & & \text{負電荷子}
\end{align*}
\]
考察

塩化アンモニウムの雲に種々の有機蒸気を添加すれば、煙系の安定度がどのように影響されるかを煙界の沈降速度の測定から検討し、添加蒸気がすべて凝結的に作用することを知った（第1章及び第3図）が、以下にこれ等添加物の作用機構について考察する。

塩化アンモニウム水溶液の露に対する有機蒸気の作用機構としては、（1）“表面活性蒸気”は露粒子の呈する帯電現象の影響をさして受けず安定化作用を持つ、（2）ペンゼン、二硫化炭素等及び（3）硫性物質の蒸気（硫酸、硫酸等）は正帯電粒子上に凝縮しにくく且つ露系に対して凝結的に作用することを論じた。このような機構を塩化アンモニウムの煙の場合に適用することは興味があることではあるが、必ずしも一致した結果が得られるとは考えられない。即ち、液体粒子と固体粒子とでは界面化学的見れば、殆ど共通する点は見出しがたい。もしも Farmers の結果を信じて塩化アンモニウム水溶液の露について得られた結果がよく類似しているとすれば、第1章及び第3図における“表面活性蒸気”（アミトン及び酢酸＝エチルエステル）の挙動は露系に対する場合と全く異なる結果を与えるが、この原因は明らかに水滴粒子と固体粒子との差に起因するものであり、塩化アンモニウム粒子の面上の“表面活性性”の特性が現われていないのが影響ある現象に思い立てるようと思われる。即ち、蒸気を添加した場合には、水は（Δa～τ/τn）図表上で蒸気と類似した挙動を示したが、蒸気に対しては異なる結果を与えるとした。この原因としては塩化アンモニウム水溶液の水滴に対し水が緩い“表面活性性”を示す事実、又は水が塩化アンモニウムの蒸気粒子の界面の状態を全く変化させることに由来するものと考えられる。

従って、塩化アンモニウムの雲に有機蒸気を添加した場合、表面活性性に由来する効果が大でないと仮定しても、第5図に示されている結果が説明できれば蒸気に対する塩化蒸気の作用機構は説明は可能である。しかしながら、これらの事実を説明するに当り、塩化アンモニウム水溶液の露の場合に成功した議論をそのまま持込んだとしても、正帯電粒子に対する添加蒸気の凝縮速度の大きさを制限的に推論するのみで、蒸気に対して同一傾向の添加蒸気の作用機構をより明確化することは殆ど寄与する余地は望めない。

なお、正、負帯電粒子あるいは中性粒子に対する添加蒸気の凝縮の差異を直接的に測定することが必要であるが、これらの事項については別の報告する。

本研究の終了に臨み種々御指導御教示戴いた名古屋大学理化学教室佐々木教授に厚く感謝する。

五酸化バナジウムの物理化学的性質について（第2報）

電気伝導度における臨界温度と電導機構について

河口 武夫

序論
五酸化バナジウム固体について最近、物理論的並びに構造論的研究が行われ、その中電気伝導度に関する報告が数多くある。三者がある電気伝導の機構には、異なるものとされている。測定温度も200℃以下である。著者はさらに電気伝導度 a = a_0 exp (−E/2kT) で示され、酸素圧依存性は Baumbach-Wagner の法則を満足し得ることを報告したが、結晶性試料について高温度領域において更に実験を行った結果、活性化エネルギー E が臨界温度 T_c を越えると変化すること、T_c 以上の温度で試料の処理、不純物の有無及び酸素圧の高低によって E が減少するものと増加するものとの二つの形式があること、(2) (3) における前の形式の電気伝導については Nieboer-Gurney-Mott の説が適用されること等の諸点を明らかにした。

実験結果
試料は燃焼法により作製し、加熱温度及び時間、冷却速度、水蒸気の防壁などに注意し、外部条件を含めて電気伝導度測定の開始まで試料を出来るだけ同一条件に保持した。実験は既述の装置 p99 及び重度同じ形式のものを用い、特に極板と試料の間の接触に留意した。測定は酸素圧 150, 50, 10, 1, 0.1, 0.01 及び 0.005 mmHg；温度 20℃から500℃において行い、その結果を第1図及び第1表に示した。

第1図 温度による電気伝導度の変化

第1表 電気伝導度における活性化エネルギー及び臨界温度

<table>
<thead>
<tr>
<th>試料記号</th>
<th>加熱温 (℃)</th>
<th>加熱時間 (hr)</th>
<th>冷却 (mmHg)</th>
<th>T < T_c</th>
<th>T > T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>700</td>
<td>3</td>
<td>冷却</td>
<td>0.005</td>
<td>0.47</td>
</tr>
<tr>
<td>B</td>
<td>690</td>
<td>2</td>
<td>水冷</td>
<td>0.01</td>
<td>0.45</td>
</tr>
<tr>
<td>C</td>
<td>700</td>
<td>3</td>
<td>冷却</td>
<td>10</td>
<td>0.44</td>
</tr>
<tr>
<td>D</td>
<td>690</td>
<td>2</td>
<td>水冷</td>
<td>50</td>
<td>0.47</td>
</tr>
<tr>
<td>E_z</td>
<td>1000</td>
<td>1</td>
<td>冷却</td>
<td>150</td>
<td>1.44</td>
</tr>
<tr>
<td>F_z</td>
<td>690</td>
<td>9</td>
<td>冷却</td>
<td>150</td>
<td>0.90</td>
</tr>
<tr>
<td>G_z</td>
<td>690</td>
<td>1</td>
<td>冷却</td>
<td>10</td>
<td>0.44</td>
</tr>
<tr>
<td>H_z</td>
<td>690</td>
<td>1</td>
<td>冷却</td>
<td>50</td>
<td>0.46</td>
</tr>
<tr>
<td>I</td>
<td>690</td>
<td>2</td>
<td>水冷</td>
<td>0.1</td>
<td>0.46</td>
</tr>
<tr>
<td>J_z</td>
<td>690</td>
<td>1</td>
<td>冷却</td>
<td>150</td>
<td>0.43</td>
</tr>
<tr>
<td>K</td>
<td>690</td>
<td>0.5</td>
<td>冷却</td>
<td>0.01</td>
<td>0.43</td>
</tr>
<tr>
<td>L</td>
<td>690</td>
<td>1</td>
<td>冷却</td>
<td>10</td>
<td>0.44</td>
</tr>
<tr>
<td>M_z</td>
<td>690</td>
<td>0.5</td>
<td>冷却</td>
<td>0.1</td>
<td>0.45</td>
</tr>
<tr>
<td>N_z</td>
<td>690</td>
<td>1</td>
<td>冷却</td>
<td>0.01</td>
<td>0.44</td>
</tr>
</tbody>
</table>

* (醇酸)は河口, 図表 5, 79 (1952)。