4. 結 語

偏光消度の測定は古くから行われているが（6），その
ほとんどが写真法によるため定量的な値しか得られず,
誤差についてもその大きさが把握されるに至ってお
ない。Reitz（7）は種々検討を行って偏光消度を3桁目まで
求めているが，そこまで精度があるとは考えられない。
Rankらの1943年の報文（9）によるとも直接測定装置
を用いた最初のものであるが，誤差の検討は十分でなく
また1948年の報文によるもの（9）はその近似法から "hi-
ghly polarized line" に限られている。

われわれの方法によれば偏光消度をその全域にわた
って，誤差の範囲とともに比較的簡単に測定することが
できる。

絶対強度については Rank らが（9）多くの炭化水素
について測定しているが，偏光消度の精度がよくないた
め満足すべき値ではない。

総に偏光を提供され，また種々御教示を下さった
木島三一郎教授および市崎，内川教授に感謝する。また
本研究の一部は文部省科学研究費によったことをのべ
謝意を表する。

（昭和 29 年 4 月，日本化学会第 7 年会講演）

5) 表野，宮川，和田，吉田，本誌 75，1071（1964）.

6) J. T. Edsall, E. H. Wilson, J. Chem. Phys. 6, 124 (1928);
F. F. Cleveland, ibid. 7, 206 (1929); 13, 101 (1945); B. L.
Crawford Jr., W. Horwitz, ibid. 15, 268 (1947).
(1947).

混合比および粒径の反応速度におよぼす影響（初期反応）

小 松 和 蔵**

総 言

前報紙の報告において金属ケイ素と塩化第一鉛との反応は
表面過程が律速で，初期および主反応においてそれぞれ

\[\alpha = pt^{n+3} \quad \text{および} \quad \frac{dz}{dt} = k(1 - \alpha)^{3/2} \]

が成立することを
認めた。しかしそ第2報においては \(p \) および \(k \) は（混
合比）および \(\alpha \) （粒径および比重の関数）の関数である
から本報においては試料の混合比および粒径を変えて研
究し，初期反応（第5報）および主反応（第6報）につ
き第2報の議論が成立するか否かを検討する。
実験

1. 実験装置および方法

第3報と同様である。

2. 実験試料

塩化第一鉄および亜塩（試料Ⅳ）試料は第3報と同様にして調製した。混合比および粒径の異なる試料は以下のよう調製した。

第1表

<table>
<thead>
<tr>
<th>CuCl (%)</th>
<th>反応温度(℃)</th>
<th>p</th>
<th>V</th>
<th>t_r(min)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01</td>
<td>221</td>
<td>4.885×10^{-10}</td>
<td>8.3</td>
<td>22</td>
<td>9.085×10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>229</td>
<td>4.048×10^{-10}</td>
<td>12.10</td>
<td>30</td>
<td>1.726×10^{-1}</td>
</tr>
<tr>
<td>9</td>
<td>239</td>
<td>2.093×10^{-11}</td>
<td>13.03</td>
<td>21</td>
<td>2.549×10^{-1}</td>
</tr>
<tr>
<td>17.92</td>
<td>200</td>
<td>4.966×10^{-9}</td>
<td>3.473</td>
<td>200</td>
<td>6.357×10^{-3}</td>
</tr>
<tr>
<td>9</td>
<td>218</td>
<td>1.730×10^{-7}</td>
<td>8.899</td>
<td>37.5</td>
<td>1.475×10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>223</td>
<td>7.080×10^{-9}</td>
<td>5.371</td>
<td>25</td>
<td>7.276×10^{-1}</td>
</tr>
<tr>
<td>9</td>
<td>238</td>
<td>5.784×10^{-10}</td>
<td>9.048</td>
<td>20</td>
<td>1.943×10^{-1}</td>
</tr>
<tr>
<td>9</td>
<td>247</td>
<td>1.637×10^{-7}</td>
<td>6.259</td>
<td>11</td>
<td>2.865×10^{-1}</td>
</tr>
<tr>
<td>25.21</td>
<td>226</td>
<td>3.244×10^{-9}</td>
<td>4.872</td>
<td>42.5</td>
<td>4.031×10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>234.5</td>
<td>5.545×10^{-9}</td>
<td>5.829</td>
<td>21</td>
<td>1.031×10^{-1}</td>
</tr>
<tr>
<td>9</td>
<td>247</td>
<td>8.411×10^{-10}</td>
<td>7.198</td>
<td>17</td>
<td>2.241×10^{-1}</td>
</tr>
<tr>
<td>33.95</td>
<td>224.5</td>
<td>2.234×10^{-8}</td>
<td>8.119</td>
<td>12.5</td>
<td>3.855×10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>234</td>
<td>9.124×10^{-11}</td>
<td>6.383</td>
<td>30</td>
<td>7.736×10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>240</td>
<td>1.036×10^{-8}</td>
<td>5.005</td>
<td>32</td>
<td>6.006×10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>247</td>
<td>8.348×10^{-27}</td>
<td>14.17</td>
<td>64</td>
<td>9.870×10^{-2}</td>
</tr>
<tr>
<td>50.06</td>
<td>234</td>
<td>2.658×10^{-5}</td>
<td>4.961</td>
<td>24</td>
<td>9.237×10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>240</td>
<td>2.637×10^{-5}</td>
<td>5.132</td>
<td>57.5</td>
<td>3.906×10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>247</td>
<td>4.116×10^{-21}</td>
<td>11.81</td>
<td>47</td>
<td>9.824×10^{-2}</td>
</tr>
<tr>
<td>263</td>
<td></td>
<td>3.855×10^{-10}</td>
<td>7.913</td>
<td>17.5</td>
<td>1.934×10^{-1}</td>
</tr>
</tbody>
</table>

第2表

<table>
<thead>
<tr>
<th>Fsi (mm)</th>
<th>反応温度(℃)</th>
<th>p</th>
<th>V</th>
<th>t_r(min)</th>
<th>K</th>
<th>E (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>202</td>
<td>3.788×10^{-7}</td>
<td>3.249</td>
<td>60</td>
<td>1.47×10^{-2}</td>
<td>34.5g</td>
</tr>
<tr>
<td>9</td>
<td>208</td>
<td>2.148×10^{-7}</td>
<td>3.863</td>
<td>36</td>
<td>3.19×10^{-2}</td>
<td>2.91h</td>
</tr>
<tr>
<td>212</td>
<td>6.713×10^{-6}</td>
<td>3.090</td>
<td>33</td>
<td>2.78×10^{-2}</td>
<td>3.91h</td>
<td>3.91h</td>
</tr>
<tr>
<td>218</td>
<td>1.036×10^{-7}</td>
<td>4.712</td>
<td>22</td>
<td>6.87×10^{-2}</td>
<td>6.28h</td>
<td>6.28h</td>
</tr>
<tr>
<td>223</td>
<td>1.281×10^{-8}</td>
<td>4.864</td>
<td>34</td>
<td>5.38×10^{-1}</td>
<td>8.70h</td>
<td>8.70h</td>
</tr>
<tr>
<td>234</td>
<td>1.223×10^{-7}</td>
<td>5.709</td>
<td>13</td>
<td>1.68×10^{-1}</td>
<td>1.86h</td>
<td>1.86h</td>
</tr>
<tr>
<td>0.025</td>
<td>215.5</td>
<td>2.620×10^{-15}</td>
<td>6.498</td>
<td>143</td>
<td>1.69×10^{-2}</td>
<td>1.82h</td>
</tr>
<tr>
<td>9</td>
<td>223</td>
<td>2.883×10^{-6}</td>
<td>4.080</td>
<td>45</td>
<td>2.48×10^{-2}</td>
<td>2.17h</td>
</tr>
<tr>
<td>233</td>
<td>9.557×10^{-18}</td>
<td>7.267</td>
<td>35</td>
<td>6.66×10^{-2}</td>
<td>4.11h</td>
<td>4.11h</td>
</tr>
<tr>
<td>238</td>
<td>2.114×10^{-6}</td>
<td>10.415</td>
<td>70</td>
<td>6.48×10^{-2}</td>
<td>5.55h</td>
<td>5.55h</td>
</tr>
<tr>
<td>245</td>
<td>1.225×10^{-11}</td>
<td>7.318</td>
<td>26</td>
<td>1.09×10^{-1}</td>
<td>8.52h</td>
<td>8.52h</td>
</tr>
<tr>
<td>252</td>
<td>1.092×10^{-9}</td>
<td>7.087</td>
<td>15</td>
<td>1.95×10^{-1}</td>
<td>1.26h</td>
<td>1.26h</td>
</tr>
<tr>
<td>0.032</td>
<td>236</td>
<td>6.521×10^{-11}</td>
<td>5.429</td>
<td>58</td>
<td>3.11×10^{-2}</td>
<td>3.21h</td>
</tr>
<tr>
<td>9</td>
<td>246.5</td>
<td>7.132×10^{-10}</td>
<td>7.927</td>
<td>70</td>
<td>4.56×10^{-2}</td>
<td>5.94h</td>
</tr>
<tr>
<td>253</td>
<td>5.780×10^{-11}</td>
<td>6.483</td>
<td>32</td>
<td>7.59×10^{-2}</td>
<td>9.55h</td>
<td>9.55h</td>
</tr>
<tr>
<td>9</td>
<td>263.5</td>
<td>8.100×10^{-10}</td>
<td>6.825</td>
<td>18</td>
<td>1.48×10^{-1}</td>
<td>1.50h</td>
</tr>
<tr>
<td>9</td>
<td>263.5</td>
<td>8.100×10^{-10}</td>
<td>6.825</td>
<td>18</td>
<td>1.48×10^{-1}</td>
<td>1.50h</td>
</tr>
</tbody>
</table>
(1) 混合比を変化する場合：ケイ素および塩化銅の粒径は FSi = Fcucit = 0.02 mm で両者を塩化銅％にして 6.01, 17.92, 25.21, 33.95 および 50.60 なるように混合した。

(2) 粒径を変化する場合：塩化銅は不安定で取扱いが困難であるからケイ素の粒径を変えて α を変化させた。精製ケイ素粉末を再度粉末し FSi = 0.020, 0.025 および 0.032 mm のケイ素と塩化銅（顕微鏡法により Fcucit = 0.012 mm）を混合（CuCl ％ 17.16 17.17）した。実験試料には (1) および (2) の場合にそれぞれ 0.2 ± 0.7 g および 0.3 g を精密に使用した。

実験結果

各試料を反応させると、CuCl％および FSi の大きいか試料ほど反応速度が小さくなるから反応はそれに準じて高温で行った。a-t 曲線はこれらに関係なく第 4 報第 1 図の S 字形曲線を示し、初期反応においては (1) 式が混合比および粒径に関係せず a = 0.3 程度までの範囲で

\[a = \frac{dF}{dt} \] (1)

で成立し、この点は dα/dt = 最大の点と大体一致した。混合比および粒径を変えた場合に得られた P および U 等の値をそれぞれ第 1 および 2 表に示した。表において P, K および E に関しては考察参照。

考察

第 2 報において図右反応の混合比の影響を考察するに反応速度は中心粒子 B の周囲にある A 粒子との接触点の数 nA に比例するものと推定した。本反応においてケイ素および塩化銅粒子のいずれを A および B 粒子とするかが問題であるが、これは実験結果から判断することが不可能であった。しかしながら塩化銅の増加するほど反応速度が増加する事実（第 1 表）から A = Si および B = CuCl と置けば、

\[x = \text{ケイ素の重量/塩化銅の重量} \]

\[a = \text{Fucit/FSi} \] および nA = nSi = (ax + 1 + ax)^m となる。nSi は塩化銅％の増加とともに減少する。したがってこの反応においては中心粒子に塩化銅粒子をとり、その周囲に Si 粒子を考えた方が反応速度に影響すると考えればよい。第 4 報において報告したように p および U は反応温度に関係なく、これらを直接反応速度と関係づけられないが、(1) 式の右辺を第 2 報の(16)式の右辺の第 1 項と相等しいものとすれば

\[p = 3k(\alpha x + 1 + ax)^m / Vr (l + 1)(l + 2)(l + 3) \] (2)

ただし \(V = l + 3 \)

(3) (2) の 1 および 3 式参照。

<table>
<thead>
<tr>
<th>CuCl (%)</th>
<th>x</th>
<th>y (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01</td>
<td>15.64</td>
<td>85.3</td>
</tr>
<tr>
<td>17.92</td>
<td>54.50</td>
<td>76.7</td>
</tr>
<tr>
<td>25.21</td>
<td>2.966</td>
<td>72.6</td>
</tr>
<tr>
<td>33.92</td>
<td>1.947</td>
<td>69.6</td>
</tr>
<tr>
<td>50.60</td>
<td>0.971</td>
<td>68.9</td>
</tr>
</tbody>
</table>

これから

\[y = abx(1 + ax) \] (4)

* 各試料中の塩化銅の量によって生成した四塩化ケイ素の量が測った。
** 一般に y = (ax + 1 + ax)^m に比例するものと考えられる。**
表 4

<table>
<thead>
<tr>
<th>F_{Si} (mm)</th>
<th>$ax/(1+ax)$</th>
<th>230°C</th>
<th>240°C</th>
<th>250°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>测定値</td>
<td>計算値</td>
<td>测定値</td>
<td>計算値</td>
</tr>
<tr>
<td>0.020</td>
<td>0.5559</td>
<td>1.211 10^{-1}</td>
<td>1.408 10^{-1}</td>
<td>2.387 10^{-1}</td>
</tr>
<tr>
<td>0.025</td>
<td>0.2099</td>
<td>4.508 10^{-2}</td>
<td>3.300 10^{-2}</td>
<td>8.845 10^{-2}</td>
</tr>
<tr>
<td>0.0325</td>
<td>0.1585</td>
<td>1.922 10^{-2}</td>
<td>2.220 10^{-2}</td>
<td>3.543 10^{-2}</td>
</tr>
</tbody>
</table>

$K_T = \frac{p_{CuCl}^2}{p_{Si}^2} = 3.53$ および $p_{Si} = 2.34$ を代入すれば、$F_{CuCl}/F_{Si} = 1.13$ となり実験条件すなわち各々=1 とよく一致し、この反応速度においては混合速度において粒状粒子の集合はほとんど寄らないと想定される。

K_T を求める際の第1表のごとく、反応温度にともない増大するが、この実験では塩化銅粒子の大きさが実験技術の未熟であったため、K_T の大小をつき $\log K_T$ と T の関には良い直線関係は求められなかったが、比較的測定値の計算値を実験結果の実験変動よりその関係を求めるのは困難であった。

（2）粒子を変化した場合

混合比を一定（CuCl%平均17.10, $x = 4.828$）にして $F_{Si} = 0.020, 0.025$ および0.0325mm, $F_{CuCl} = 0.0125$mmおよび比数値よりそれぞれaxの値として0.354, 0.186 および0.0850を得た。

第2表より実験結果を整理すれば $\log K_T$ と T の関係が得られる（第1図）所想を示した。式（5）式の計算値は第1図の点線で示した。

$\bar{F}_{Si} = 0.020$ mm

$K_T = 1.308 \times 10^{4} \exp(-34.5 \times 10^{-3}/RT)$ | $K_T = 1.927 \times 10^{4} \exp(-31.3 \times 10^{-3}/RT)$ | $K_T = 6.747 \times 10^{4} \exp(-31.1 \times 10^{-3}/RT)$ |

第1図より明かにわかるように K_T が F_{Si} の大小により一定の値を示すことが見出される。ax の大きさの変化にともない実験結果および関係式は式を公式式（5）式の関係を示すとよく直線関係（7）および（8）式が成立する（第6報第3および4図参照）。

$m' = -1.3459 + 5.585 \times 10^{-3} T$ および $K_T = 1.472 \times 10^{4} \exp(-35.98/RT)$ が成立し、反応速度定数 K_T は温度のみの関数 K_T^0 と ($ax/1+ax)\times m'$ との積として表される。
(9) 式は任意の温度および粒度の函数として反应速度定数を表わす一式で、第2表の計算値および第1表の実測値はこれより算出したものです大体よく一致している。この反応の真の活性化エネルギー \(E_0 \) は约 36 kcal/mole となる。

（7）式で \(m' = 0 \) とすれば \(T = 241 \) \(K \) となり、これは第2報で予想した値および主反応につき同様に求められる値（第6報参照）すなわち塩化銅の融点より低いのは固体反応、とくにこの初期反応が著しく弱弱化する因子の作用を受けやすい事實によるものと一応考えられるが、その温度の差異および（7）式が7重反応の理論になったのは実験値の未熟および本初期反応の特殊法に基づくものと言える。（9）

(9) 式を温度 \(T \) につき微分変形して

\[
K(T,a)_{a} = 1.472 \times 10^{15} \exp\left(-35.99 \times 10^{3}/RT\right)
\times \left(4.862/1 + 4.826\right)\exp\left(35.99 \times 10^{3}/RT\right)
\]

(9) 式を温度 \(T \) につき微分変形して

\[
E(T,a) = 55.99 \times 10^{3} + 4.555 \times 10^{-2} T
\times \log\left(4.862/1 + 4.826\right)\text{cal/mole}
\]

(10) \(E(T,a) \) は \(T \) および \(a \) の函数として第2表の活性化エネルギーの計算値の平均値として

\[
E = \int E(T,a) \, dT / \int dT
\]

を示した。

以上の（9）および（10）式から算出した \(K(T,a)_{a} \) および \(E(T,a) \) の値はよく測定値と一致し、第2報の理論が妥当であることを示している。

総括

第2報の理論を検討すべくケイ素と塩化第一銅との反応の初期反応を混合比およびケイ素粒子の粒度を変化して、初期反応速度定数

\[
K = \left\{ n(ax/1+ax) \right\}^{1/3} / r
\]

を定義し、\(K \) と混合比および粒径の関係を求めめた。

（1）混合比を変化した場合：四塩化ケイ素の取量 \(y \) と混合比 \(x \) との間には \(y = ax/1+ax \) なる関係が成立し、この \(a \) の値から本反応系では試料混合過程中に粒子の集合に起らないと結論した。\(K \) は \(x \) とともに増加すると関係の値のばらつきのために \(K \) と \((ax/1+ax) \) の関係を求めるのは困難であった。

（2）粒径を変化した場合： \(K \) は \(a \) および温度の函数として表われ、一般に

\[
K(T,a)_{a} = K_r (ax/1+ax)^{m'}
\]

が成立し、上式からの計算値はよく測定値と一致した。

活性化エネルギーは \(E(T,a) = E_0 + RT \ln \left(ax/1+ax\right) \) で表われ、真の活性化エネルギー \(E^* = 36 \) kcal/mole であった。

（昭和27年12月、土、粉末、粉末に関する連合講演会第2部講演）