フラバノン類の合成（第13〜15 報）

（第13 報）7-アミノフラバノン類の合成

第8 報2において6-アミノフラバノン類の合成について報告した。今回7-アミノフラバノン類の合成を行ったのでここに報告する。

フラバノン合成の原則であるカルコン誘導体を合成するために芳香族ケトンとして2-オキシ4-アセトアミノアセトフェノンを用い、これにベンズアルデヒド、アミルアルデヒド、p-オキシベンズアルデヒド、ヒドロキシルをアルカリの存在下に絡合すれば、それぞれ2-オキシ4'-アセトアミノカルコン（I）、2'-オキシ4'-アセトアミノ4-メトキシフェノル（II）、2'-オキシ4'-アセトアミノ3,4-メチレンジオキシカルコン（II）を得る（第1表）。

上記のカルコン誘導体をアルコールにとかし、塩酸の存在下に煮沸して、N-アセチル基の加水分解とフラバノンへの脱水を同時に行い、7-アミノフラバノン（IV）、7-アミノ4'-メトキシフラバノン（V）、7-アミノ4'-オキシフラバノン（VI）、7-アミノ3',4'-メチレンジオキシフラバノン（VII）を得た（第2表）。

7-アミノフラバノンの光合成腐については、6-アミノフラバノンの場合は同様に7-(3-カルボキシベンゾプロピオアミノ)フラバノンに誘導して実験を続行中であるが、まだ成功に至らない。

実験の部

2-オキシ4'-アセトアミノ-アセトフェノン

1）m-アセトアミノアニソール3) 10 g、アセチルクロミド 20 g を二硫化炭素 30 cc 中に浮べ、これに無水塩化アルミニウム 30 g を加える。激しい反応が起こるが、さらに温浴に 1 時間加温煮沸する。つぎに二硫化炭素を蒸発して抽出した後、残渣に氷水を加えて分解し、生ずる沈殿を集め、希アルコールにアルコールより再結晶して、mp 141°〜142°C の無色の針状晶 2.5～3.0 g を得た。

文献の mp 142°C 9)、91°C 3。

2) N、o-ジアセチル m-アミノソフェノール5) 10 g と無水塩化アルミニウム 30 g との混合物を油浴上で 130°〜150°C に加熱すると、かき混ぜた塩酸ガスを発生して反応が起こる。1 時間同温度に保つ後、冷却し氷と塩酸で分析が生ずる沈殿を集める。少量のアルコールより再結晶すれば、mp 141°〜142°C 2) の 2-オキシ4'-アセトアミノ-アセトフェノン 5.4 g を得る。

2'-オキシ4'-アセトアミノカルコン（I）

2-オキシ4'-アセトアミノ-アセトフェノン 2 g、ベンズアルデヒド 1 g をアルコール 10 cc にとかし、30°〜40°C の油浴上で 50% 水酸化アルカリ 4 g を滴下する。滴下後 60°〜70°C の水浴で 5 分間あたためて後水に注ぎ、塩酸で中和すれば黄色の沈殿を生ずる。この沈殿をろ取り始めアルコールにつきベンゾールより再結晶して、mp 188°〜189°C の 2'-オキシ4'-アセトアミノカルコンの黄褐色針状晶 1.7 g を得る。

窒素分析 理想値 N 4.95%

C17H20O3N としての計算値 N 4.98%

他のカルコン類も I の場合とはほぼ同一条件で合成したが、観点、収量等は第1表のとおり。

7-アミノフラバノン（V）

2'-オキシ4'-アセトアミノカルコン（I）1 g をアルコール 50 cc 中に浮べ、これに 10% 塩酸 4 cc を加え、湯浴に 20 時間煮沸する。試薬でおろを主の大部分を抽出した後、残渣に水を加えてあたため、ろ過し不溶物を除く。ろ液に亜鉛を加えて弱アルカリ性とし、析出する沈殿をベンゾールより再結晶する。微黄色の針状晶の

1) 南原（第12報）本誌 76, 206 (1953).
2) 藤野、室堂、佐藤、本誌 75, 431 (1954).
3) F. Reverdin, Ber. 47, 1588 (1914).
第 1 表

<table>
<thead>
<tr>
<th>化合物名</th>
<th>融点 (℃)</th>
<th>収率色 (%)</th>
<th>室素分析 (%)</th>
<th>実験値</th>
</tr>
</thead>
<tbody>
<tr>
<td>2'-オキシ-4'-アセトアミノ-4-メトキシンカルコン (I)</td>
<td>182～184</td>
<td>40, 黄橙色</td>
<td>4.50</td>
<td>4.24</td>
</tr>
<tr>
<td>2'-オキシ-4'-アセトアミノ-4-オキシカルコン (II)</td>
<td>200～202</td>
<td>30, 黄橙色</td>
<td>4.71</td>
<td>4.77</td>
</tr>
<tr>
<td>2'-オキシ-4'-アセトアミノ-3,4-メチレンオキシンカルコン (Ⅲ)</td>
<td>222～224</td>
<td>30, 黄橙色</td>
<td>4.31</td>
<td>4.35</td>
</tr>
</tbody>
</table>

第2表

<table>
<thead>
<tr>
<th>化合物名</th>
<th>融点 (℃)</th>
<th>収量 (%)</th>
<th>室素分析 (%)</th>
<th>ピクラート</th>
<th>N-アセチル誘導体融点 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-アミノイソフランノン</td>
<td>140～141</td>
<td>20, 淡黃</td>
<td>5.20</td>
<td>162～163</td>
<td>11.24</td>
</tr>
<tr>
<td>7-アミノイソフランノン</td>
<td>130～131</td>
<td>30, 淡黃</td>
<td>5.49</td>
<td>134</td>
<td>11.57</td>
</tr>
<tr>
<td>7-アミノイソフランノン</td>
<td>169～171</td>
<td>25, 淡黃</td>
<td>4.91</td>
<td>156～157</td>
<td>10.93</td>
</tr>
</tbody>
</table>

7-アミノイソフランノン 0.2 g を得た。mp 132℃～133℃。

室素分析 実験値 N 5.73％
C₃H₅NO₂ としての計算値 N 5.85％

ピクラート 分解点 134℃
室素分析 実験値 N 11.93％
C₃H₅NO₂N₄ としての計算値 N 11.96％

5-アセチル誘導体 mp 214℃～216℃
室素分析 実験値 N 5.01％
C₃H₅NO₂N₄ としての計算値 N 4.98％

他のアミノイソフランノンもこれと同一条件で合成した。
融点、収量、ピクラート、N-アセチル誘導体等第2表のとおりである。
(昭和29年4月、日本化学会第7年会 (一部) 講演)

(第14報) 4'-アミノイソフランノン類の合成ならびにその光学分割

イソフランノン合成の原料であるカルコン誘導体を合成するために芳香族アルデヒドとして、p-アセトアミノベンゾアルデヒド1) を用い、これに 0-アセトアミノベンゾフェノン2), 2-アキシ-3-メチルアセトフェノン3), 2-アキシ-4-メチルアセトフェノン2), 2-アキシ-5-メチルアセトフェノン2) と 30～40% 水酸化カリウムの存在のもとに総合して、それぞれ 2'-アキシ-4'-アセトアミノ-4-メルカプトカルコン (Ⅰ), 2'-アキシ-4'-アセトアミノ-3'-メチルカルコン (Ⅱ), 2'-アキシ-4'-アセトアミノ-5'-メチルカルコン (Ⅲ) を得た (第1表)。

これらのカルコン誘導体のアルコール溶液を希塩酸ととともに煮沸し、N-アセチル基の加水分解とフェノンへの閉環を同時に行い、それぞれ 4'-アミノイソフランノン (Y), 4'-アミノ-8-メチルイソフランノン (Ⅳ), 4'-アミノ-7-メチルイソフランノン (Ⅴ), 4'-アミノ-6-メチルイソフランノン (Ⅵ) を得 (第2表)。

光学分割を行うため、6-アミノイソフランノン2) の時と同様に 4'-アミノイソフランノン (Y) をベンゾール中でホルマジンと反応して 4'-[(3-カルボキシプロピオアラフロン]2) に分離、同定を試みた。

1) S. Gabriel, M. Herzberg, Ber. 16, 2908 (1883).
3) 増部、空原、佐藤、本誌 75, 431 (1954).