繊維状蛋白類似物質の合成研究（第5-6報）

石塚由雄

（第5報）二，三のアミノ酸エステルよりN-カルボフェノキシ・α-アミノ酸の合成および重総合

前報1)においてグリシンおよびα-アミノイソ酢酸のN-カルボフェノキシ誘導体が各アミノ酸エステルより好収量で得られたことを見出したので，DL-アラニン，L-レインションおよびDL-フェニルアラニンについての新合成法を適用してN-カルボフェノキシ誘導体を合成した。

H₂N-CH-COOR′
 R
CICOOC₆H₅

HCl+CH₂COOH
 ─ HttpResponseRedirect
 ─ HttpResponseRedirect
 ─ HttpResponseRedirect
 ─ HttpResponseRedirect
 ─ HttpResponseRedirect

R = -CH₃(DL) -CH₂-CH₂(CH₃)₂(t)
-CH₂CH₂H₃(DL)；R' = -CH₃ -C₆H₅

α-アミノ酸のナトリウム塩よりの直接合成法2)に比較して反感は溶液温度で均一に行われ，収率も良好であった。

N-カルボフェノキシ誘導体の融点はレインションのみは同様に油状であるが，DL-アラニン146℃〜147℃，DL-フェニルアラニン114℃〜115℃で直接合成法によるものに比し幾分上昇し3)，塩基分析値もよく一致している。

重合性に関しては，N-カルボフェノキシ・DL-アラニンメチルエステルの合成

DL-アラニンメチルエステル（bp₃6 61℃）15.9 gをクロロホルム40 ccに溶解し，-8℃に冷却ながらつつクロルアルデヒデのアラニン13.0 gのクロロホルム溶液15 ccを滴下する。滴下後低温で3時間かきませた後，クロロホルム溶液を2 N塩酸および水で洗浄し，無水ケペンで一夜乾燥する。溶液をクロロホルムを留去すると油状物質が残り，これをエタノール・石油エーテルで再結晶する。mp 54℃〜55℃。収量12.0 g(74%)。

実験

N-カルボフェノキシ・DL-アラニンの合成 N-カルボ

第1表 ポリペプチドの重合率，分子量，極限粘度

<table>
<thead>
<tr>
<th>ポリペプチド</th>
<th>重合時間(hr)</th>
<th>重合率(%)</th>
<th>平均分子量</th>
<th>平均重合度</th>
<th>極限粘度(g/100 cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポリ-DL-アラニン</td>
<td>900</td>
<td>93.6</td>
<td>82,000</td>
<td>1,150</td>
<td>0.366</td>
</tr>
<tr>
<td>ポリ-L-レインション</td>
<td>1,000</td>
<td>44.6</td>
<td>39,000</td>
<td>345</td>
<td>0.100</td>
</tr>
<tr>
<td>ポリ-DL-フェニルアラニン</td>
<td>720</td>
<td>29.0</td>
<td>35,500</td>
<td>240</td>
<td>0.055</td>
</tr>
</tbody>
</table>

1) 前報（第4報）本誌 76, 802 (1955)。
2) 岩倉，石黒，石黒谷，高分子化学 11, 926 (1954)；岩倉，石黒，中西，岩田，高分子化学 11, 533 (1954)。
3) 岩倉，石黒，高分子化学 11, 941 (1954)。
4) 岩倉，石黒，高分子化学 11, 943 (1954)。

直疑合成法によるN-カルボフェノキシ・DL-アラニンの mp 63℃〜64℃である。
フェノキシ-DL-アラニンメチルエステル 8.5 g を濃塩酸
と氷水酢酸の等量混合物 24 cc に入れ加熱して溶解させ
る。20 分後冷却し、氷水しつつ冷水 100 cc を徐々に加
えると白色結晶が析出する。mp 146°〜147°C。収量 7.8 g (97.5%)。

窒素分析

C₆H₁₁O₂N としての計算値 6.83% との差を

実測値 6.83%

ポリ-DL-アラニンの合成
N-カルボフェノキシ-DL-アラニン 0.30 g をビリジン
1.13 g、ベンゼン 10 cc に溶解し、封管内で 80°C
で加熱する。加熱をつづけると次第にゲル状になり 90
時間でほとんど完全なゲルになる。遠心分離し、エタノール
とデヒードリンで洗い、キシレンのアブデールハルデン乾燥器で
数時間乾燥すると白色物質になる。収量 0.095 g (重合率 93.6%)。

窒素分析

実測値 19.37%

(C₆H₁₂ON)ₙ としての計算値 19.72%

ジクロル酢酸にとかし、浸透圧を測定して分子量を求
めた。

測定温度 30°C、溶液密度 0.893

浸透圧 0.607 × 10⁻¹ atm

平均分子量 M = 82,000 平均重合度 P = 1,150

またジクロル酢酸溶液で 30°C で粘度を測定した。

極限粘度 [η] = 0.366 (濃度単位 g/100 cc)

N-カルボフェノキシ-DL-ロイシンの合成

ロイシンメチルエステル (bp 74°〜75°C) 13.2 g を
クロホルム 40 cc にとかし、0°C 以下に氷水、かきまぜ
ながらジクロロ酢酸フェニルエステル 6.6 g のクロホル
ム溶液 15 cc を徐々に滴下する。滴下終了後冷却で 3 時
間かきまぜ、2N 塩酸および水で洗浄、無水ウオウ酸で一
夜乾燥する。クロホルムを減圧で留去すると油状の N-カルボフェノキシ-DL-ロイシンが得られる。結晶化しない。

収量 7.2 g (62.5%)。

N-カルボフェノキシ-ロイシンメチルエステル 7.2 g を濃塩酸 10 cc、氷酢酸
20 cc の混合物と 30 分間煮沸で加熱すると溶解する。

減圧で氷酢酸を留去し、残渣の油状物をエーテルととか
し石油エーテルを入れてドライアイスで急冷し、液を傾
漏する。この操作を数回繰返して精製する。結晶化しな
ない。収量 4.0 g (61.5%)、[α]₁₉Β₄ = -15.9° (3% 無水エタノール溶液)。

窒素分析

C₁₃H₁₉O₂N としての計算値 5.54% との差を

実測値 5.54%

ポリ-DL-ロイシンの合成
N-カルボフェノキシ-DL-ロイシン 0.50 g をビリジン
1.60 g、ベンゼン 20 cc にとかし、封管内で 80°C に
1,000分間加熱すると完全にゲル化する。遠心分離し、エタノール、エーテルでよく洗浄真空デシケーターで乾燥、さらにキシレンのアブデールハルデン乾燥器で 3 mmHg の減圧で加熱乾燥すると白色粉末になる。収量 0.1005 g (重合率 44.6%)。

窒素分析

(C₆H₁₄ON)ₙ としての計算値 12.42%

ジクロル酢酸に溶解して浸透圧を測定し分子量を求めた。

測定温度 25°C、溶液密度 e = 4.403 g/l

浸透圧 π = 2.76 × 10⁻³ atm

平均分子量 M = 39,000 平均重合度 P = 345

またジクロル酢酸溶液で粘度を測定した。

極限粘度 [η] = 0.100 (濃度単位 g/100 cc)

N-カルボフェノキシ-DL-フェニルアラニンメチルエス
テルの合成

DL-フェニルアラニンメチルエステル (bp 106°C) 9.0 g をエーテル 40 cc に溶解し、-10°C に冷却
かきまぜながらジクロロ酢酸フェニルエステル 4.0 g のエ
ーテル溶液 15 cc を滴下する。滴下後 2 時間放置でか
きまぜ生じる白色沈殿を過過する。過液は 1N 塩酸お
より水で洗浄し無水ウオウ酸で乾燥、エーテルを留去する
と固化する。石油エーテルで洗浄乾燥すると白色結晶が
得られる。収量 5.3 g (73%)。mp 78°〜79°C。

窒素分析

実測値 4.77%

C₁₃H₁₉O₂N としての計算値 4.47%

N-カルボフェノキシ-DL-フェニルアラニンの合成
N-カルボフェノキシ-DL-フェニルアラニンメチルエス
テル 5.0 g を氷酢酸と濃塩酸の等量混合物 20 cc と

15 分間煮沸すると透明液が得られる。冷却し冷水 50 cc
を徐々に加えると油状物が析出する。油状物はエーテル
で抽出し、希塩酸を含む水でよく洗い無水ウオウ酸で乾燥
する。エーテルを減圧で留去すると油状物が得られエ
ーテル-石油エーテルで再結晶すると白色結晶になる。収
量 4.1 g (90.1%)。mp 114°〜115°C。

窒素分析

実測値 4.96%

C₁₆H₁₄ON としての計算値 4.92%

ポリ-DL-フェニルアラニンの合成
N-カルボフェノキシ-DL-フェニルアラニン 0.60 g を

ビリジン 1.5 g、ベンゼン 20 cc に溶解し、80°C に
720 時間加熱すると全体がゲル化する。遠心分離し、エ
タノールおよびエーテルでよく洗い、キシレンのアブデ
ールハルデン乾燥器で 3 mmHg の減圧で乾燥すると白色

粉末が得られる。収量 0.090 g (重合率 29.0%)。

窒素分析 实測値 9.51\%
（C₅H₄ON）₆ としての計算値 9.56\%

シクロロ酢酸にとかして常温で恒速を測定して分子量を求め、また粘度測定より極限粘度を求める。
測定温度 25℃ 温度差 4.326 g/l

性可溶压 p=2.98×10⁻³ atm
平均分子量 η=35,500 平均重合度 P=240

極限粘度 [η]=0.055 (濃度単位 g/100 cc)

本研究に終始御鞭韻を賜わたる東京工業大学岩倉義男教授、編集工業試験所生駒一郎部長、L-レインとL-アラニンを提供された検測粘度測定の便宜を与えられた味の素株式会社、分析をして親い東京工業大学有機化学教室の藤原室士、登坂充 両氏に厚く感謝する。

（第6報）N-カルボフェノキシα-アミノ酸の共重結合

N-カルボフェノキシα-アミノ酸の溶液重合によるポリマーの合成法①を用いてグリシン、DL-アラニン、L-レインおよびL-フェニルアラニンのN-カルボフェノキシ塩酸塩の各種の組合せによる共重結合を行い比較的高分子量の共重結合ポリマーを得ることができる。ただし成形以上の共重結合物は重合率、分子量が著しく低下した。重合物に用いたN-カルボフェノキシα-アミノ酸はグリシンは第4報②、DL-アラニンおよびL-レインは第5報④、L-フェニルアラニンは第2報②記載的方法で合成した。

重合物は等モル比の各単量体をよく混合し、単量体に対しは 10 mole 比の和を和合のラズム溶液中で 80℃ に 100 時間加熱を行った。一般に共重結合の進行と共にアルコール物質の生成が多くなる。生成物はエタノール、エーテルで洗いあるものはアセトンで洗浄して溶液を除き、真空乾燥して重合率を定め、またグリシンによる共重結合法により分子量を決定した。その結果を第1表に示す。さらに生成共重結合物および単独重合物の溶解度に対する溶解性を第2表および第3表に示した。

第2表から明らかのようにI (G.A.) は酸、II (G.L.) は塩酸を用いて同じ程度の分子量の各単独重合物はそれぞれの溶媒に不溶である。

このことは性質の根本的な相違をみられ、I、IIおよびIII は明らかに共重結合物にみとなることができる。またG.A.P. は塩酸に可溶であるが、単独および二成分共重結合物は分子量でも塩酸で不溶であること、同様に明白な性質の相違を示すものとして共重結合の生成が現われ得、重合物の生成が検出される。

一方III (G.P.) は塩酸で可溶であり、ポリグリシン

第1表 N-カルボフェノキシα-アミノ酸の共重結合物の重合率、分子量

<table>
<thead>
<tr>
<th>番号</th>
<th>成 分</th>
<th>重合率 (%)</th>
<th>ビオレート反応</th>
<th>窒素分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.A.</td>
<td>41.0</td>
<td>淡</td>
<td>紫</td>
<td>20.99</td>
</tr>
<tr>
<td>G.L.</td>
<td>24.0</td>
<td>赤</td>
<td>紫</td>
<td>18.41</td>
</tr>
<tr>
<td>G.P.</td>
<td>28.4</td>
<td>青</td>
<td>紫</td>
<td>16.77</td>
</tr>
<tr>
<td>A.L.</td>
<td>43.5</td>
<td>一</td>
<td>一</td>
<td>14.77</td>
</tr>
<tr>
<td>A.P.</td>
<td>40.5</td>
<td>微</td>
<td>薄</td>
<td>12.65</td>
</tr>
<tr>
<td>L.P.</td>
<td>17.1</td>
<td>一</td>
<td>一</td>
<td>10.48</td>
</tr>
<tr>
<td>G.A.L.</td>
<td>10.5</td>
<td>淡</td>
<td>紫</td>
<td>18.31</td>
</tr>
<tr>
<td>G.A.P.</td>
<td>15.0</td>
<td>淡</td>
<td>紫</td>
<td>15.48</td>
</tr>
<tr>
<td>G.L.P.</td>
<td>16.5</td>
<td>淡</td>
<td>紫</td>
<td>15.45</td>
</tr>
<tr>
<td>A.L.P.</td>
<td>24.2</td>
<td>微</td>
<td>薄</td>
<td>13.66</td>
</tr>
<tr>
<td>G.A.L.P.</td>
<td>21.2</td>
<td>青</td>
<td>紫</td>
<td>12.77</td>
</tr>
</tbody>
</table>

1) 岩倉、石顧、高分子化学 11, 540 (1954). 4) 岩倉、石顧、中西、岩倉、高分子化学 11, 537 (1954).