氏の説とは反対にアマルガムの濃度の低いほど還元速度が遅く還元能が悪いという結果を得た。これは比較的還元されやすい Fe⁺⁺ 等については完全還元がほとんど 10 秒程度、リン酸等を添加しても 1 分以内の時間にて行い得るが、Ti⁺⁺ では 1 分半以上要するのでより高温の調子を加味しても Fe⁺⁺ のみを対象として結論を出すのは無意味と考えられる。

4）かりに益田氏の説のような結果を得ても電位差の面より見て合理的と考えられず、むしろアマルガムの粘度の面より考えフリマゼ速度が遅い場合には濃度高きアマルガムは粘度が大なるため、微粒になる傾向が小で、さから接触面積が小になり還元量が減ると考えるべきである。しかし歯ぐせの差を出することは困難と考えられる。粘度測定結果は第 5 表に示す。

5）アマルガムの弱化等の考察について実験を行った結果は第 6 表に示す。塩酸溶液については 53 回、硫酸溶液については 100 回のふりさぎによりアマルガム表面に泡状の凹凸ができ始め、その時に粘和アマルガムとの間の電位差を測定濃度を推定すると表記のようにになった。1 回のフリマゼ時間は約 10～20 秒である。この結果より見れば肉眼によりアマルガムの弱化が明らかに認められる場合は、ほとんど還元がなくなっている時であり、また白渦のような場

<table>
<thead>
<tr>
<th>第 6 表</th>
</tr>
</thead>
<tbody>
<tr>
<td>状況</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>面内に泡状の凹凸ができ始める</td>
</tr>
<tr>
<td>面内に泡状の凹凸ができ始める</td>
</tr>
<tr>
<td>液が白渦しあける</td>
</tr>
<tr>
<td>面内に泡状の凹凸ができ始める</td>
</tr>
</tbody>
</table>

合は還元がなくなってしま水銀による還元作用が起っている時である。

結 論

液状アマルガムともに Zn-Hg において酸鉛の量の変化は電位差に大なる変化を与えず、濃度が相当低下しても通常の分析に支障をきたすほどの変化は認められないこと、およびカルボニウムが還元鉛より還元鉛の低いことを電位差の面より明らかにした。なお微量の酸鉛により電圧が急激に上昇することについては研究中である。アマルガムの濃度が高いほど還元鉛は良いが、通常の分析においてフリマゼ時間に著しい影響を与えるほどの差はない。

終りに御指導を賜った小林松助先生、石川組雄先生に謹謝する。

（昭和 30 年 10 月、日本化学会第 4 年会発表）

（東北大学工学部応用理学教室、仙台市）

還 元 分 解 に 関 す る 研 究 （第 6～7 報）

今 泉 真、三井生 喜雄

（昭和 31 年 5 月 14 日受理）

（第 6 報） 光学活性体の還元分解について（その 1）

今 泉 真

ベンジルフェニルエーテルはラネーニッケル触媒、常温常圧下の接触還元で容易にエーテル結合の還元分解を受け、トルエンと石油酸を生成することはよく知られて

3) 三井, 綾石, 本誌 71, 203 (1950); 三井, 井上, 本誌 72, 339 (1951)。

前報（第 5 報）三井, 今泉, 綾石, 本誌 75, 1065 (1954)。
合はベンジルフェニルエーテル自身よりも容易に還元分解を受けるが、電子供与基（-NH₂）では遅くなり、イオン反応であることを支持した。\(^4\)

本報では還元分解の機構を明らかにし、さらにこれにより接枝還元の機構をも明確にする目的で光学活性体の還元分解を行った。すなわちベンジルアルコール、塩化ベンジルおよびベンジルフェニルエーテルのベンジル基のα炭素が不活性を有し、しかも還元分解後もその炭素の不活性を失わず化合物を選び、各々光学活性化合物を合成して還元分解を行い還元分解前後におけるα炭素の立体配置関係を調べ興味ある結果を得た。

\[\begin{align*}
\text{R}_1 & \quad \text{R}_1 \\
\text{R}_2 & \quad \text{R}_2
\end{align*} \]

\[\text{X} = \text{OH}, \text{Cl}, \text{O}- \]

まず還元分解の試料に光学活性体をよく知られているアトロラクチン酸の等価体、すなわちアトロラクチン酸エチルエステル（I）、α-クロルα-フェニルプロピオン酸エチルエステル（I）およびα-フェニルα-フェニルプロピオン酸エステル（II）を選んだ。

\[\begin{align*}
\text{CH}_3 & \quad \text{I} : \text{X} = \text{OH} \\
\text{Cl} & \quad \text{I} : \text{X} = \text{Cl} \\
\text{COOC}_2\text{H}_5 & \quad \text{II} : \text{X} = \text{O}-
\end{align*} \]

光学活性アトロラクチン酸エチルエステル（I）は、まずアトロラクチン酸を（+）および（-）α-フェニルエチルアミンを用いそれぞれ光学分割し、これのエステル化により合成したもの。このエステルに塩化チオニトリルを作用し光学活性α-クロルα-フェニルプロピオン酸エチルエステル（I）を得た。この光学活性のIに石炭酸ナトリウムを作用し光学活性α-フェニルα-フェニルプロピオン酸エチルエステル（II）を合成した。(+)－I ([α] \text{D} ＋25.30°)はエタノール溶液中ラネーニッケル触媒、常温常圧下の接触還元で（-）α-フェニルプロピオン酸エチルエステル（N）([α] \text{D} ＋54.82°)を生成した。また（+）－I ([α] \text{D} ＋2.36°)はバラジウム-炭素触媒、常温常圧下の接触還元で（-）－N ([α] \text{D} －4.97°)を生成し、酸鉬を酢酸による還元では（+）－N ([α] \text{D} ＋0.68°)を生成した。後者の旋光度はきわめて小さかった。つぎに（+）－II ([α] \text{D} －2.10°)をラネーニッケル触媒、常温常圧下の接触還元した場合には（+）－N ([α] \text{D} ＋23.28°)を、またその対照体（-）－II ([α] \text{D} ＋1.02°)を無水エタノール中ラネーニッケルと煮沸した場合には（-）－N ([α] \text{D} －11.61°)を生成した。このことはラネーニッケルと煮沸するという方法も普通の接触還元と全く同様に行われることを示している。

還元生成物Nは4N硫酸で加水分解してα-フェニルプロピオン酸とし、この酸の旋光度で各々の生成物の光学活性度を比較した。さらにこの酸はα-フェニルプロピオン酸クロリドを経てα-フェニルプロピオン酸アミドの結晶（mp 94℃）に導いた。α-フェニルプロピオン酸およびα-フェニルプロピオン酸アミドの旋光度は第1表および実験の部に示した。

アトロラクチン酸とα-フェニルプロピオン酸の絶対配置関係はd-アトロラクチン酸とl-α-フェニルプロピオン酸が同一立体配置を有し、L型であることが報告されている。\(^5\)

\[\begin{align*}
\text{CH}_3 & \quad \text{(+) C-C-OH} \equiv \\
\text{OH} & \\
\text{H} & \\
\text{H} & \\
\text{CH}_3 & \quad \text{(–) C-C-OH} \equiv \\
\text{H} & \quad \text{H}
\end{align*} \]

アトロラクチン酸のエステル化、Iの塩化チオニトリルによる塩基置換、およびNの加水分解では立体配置の反転は起らないが、IIの石炭酸ナトリウムによるエーテル化反応はHartらがα-フェニルエチルクロル化と石炭酸ナトリウムとの反応においてしていなかった。-OH で生成される生成物は二酸化炭素を含まない。\(^6\)

第1図 還元分解前後の立体配置関係

第1表 亜元分解前後における旋光度および光学活性度

<table>
<thead>
<tr>
<th></th>
<th>CH₃—C—OH</th>
<th>CH₃—C—Cl</th>
<th>CH₃—C—O—</th>
<th>CH₃—C—H</th>
<th>CH₃—C—H</th>
<th>CH₃—C—H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[α]₁₀D+27.38†</td>
<td>[α]₁₀D+5.6†</td>
<td>[α]₁₀D+4.2†</td>
<td>[α]₁₀D+89.0†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>[α]₁₀D+25.30† (I) 92.4%</td>
<td>H₂ → Raney-Ni</td>
<td>[α]₁₀D+54.82† (I) 82.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>[α]₁₀D+27.38† (I) 100%</td>
<td>H₂ → Pd-C</td>
<td>[α]₁₀D+54.82† (I) 82.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>[α]₁₀D+27.38† (I) 100%</td>
<td>Zn+CH₂COOH</td>
<td>[α]₁₀D+0.85†† (I) 0.96%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>[α]₁₀D+23.70† (D) 86.6%</td>
<td>H₂ → Raney-Ni</td>
<td>[α]₁₀D+30.46†† (D) 95.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>[α]₁₀D+23.28†† (D) 95.3%</td>
<td>[α]₁₀D+23.80†† (D) 35.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>[α]₁₀D+23.28† (D) 35.9%</td>
<td>H₂ → Raney-Ni</td>
<td>[α]₁₀D+16.10†† (L) 92.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>[α]₁₀D+23.28† (D) 35.9%</td>
<td>[α]₁₀D+16.10†† (L) 92.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† 無溶媒。
†† 無水エタノール。
A：光学活性度 100% に採用した旋光度。
B：A を用いて計算した光学活性度。
C：B より計算した亜元分解で保持した光学活性度。

酸ナトリウムから α-フェノキシエチルベンゼンの合成で論じているようにフェノキシドイオンの求核置換 2 次反応と考えられるので、亜体配置の反転を伴うことは明らかである。

以上の関係から亜元分解前後における亜体配置関係は第 1 図に示したようになる。

α-クロルα-フェニルプロピオン酸エチルエステルにについては Mckenzie 5 で、[α]₀ D=26.7°（無溶媒）がいまだ最高値であったが、著者は [α]₀ D=27.38°（無溶媒）を得たのでこの値を亜元度 100% に採用した。またα-クロルα-フェニルプロピオン酸エチルエステルには [α]₀ D=5.6°（無溶媒）*1，α-フェニルプロピオン酸には [α]₀ D=94.2°（無溶媒）*2，[α]₀ D=89.0°（エタノール）*4 の各々の最高値を 100% 純度で採用した。

以上の関係より計算した亜元分解前後における光学活性度および亜元分解において保持された光学活性度は第 1 表に示した。

接鉄亜元において酸素化合物 (I *, II) の場合は Walden 反転をするかまたは反転せずに約 90% 以上の光学活性を保持し、塩素化合物 (I **) の時は相当にラセミ化を伴うが光学活性を保持し同一体系配位である。しかしこの二亜鉄鉱酸による亜元ではわずかな立体配位を示すと報告している。
実験の部

L-(+)-およびD-(−)-アトロクチン酸

DL-アトロクチン酸(1)を(+)α-フェニルエチルアミン(2)および(−)α-フェニルエチルアミン(3)を用いSmithの方法(4)でL-(+)-およびD-(−)-アトロクチン酸に光を分解した。mp 107°→112°C, [α]D25 +36.74°。

α-フェニル-α-フェノキシプロピオン酸エチルエステル（III）

DL-12 g を10%水酸化ナトリウム水溶液 60cc に加え沸騰上加熱しながら透 明になるまでかきまずたつ (約7時間を要した)。冷却後塩酸性とすると油を分離し、やや固結した (10.4 g) ベンゾールまたは酢酸りより結晶し mp 98°→99°C。実測値 C 74.07%, H 5.98%

C15H14O3 としての計算値 C 74.32%, H 5.82%

この酸を (−)-(+)および(−)-α-フェニルエチルアミンで光を分解した。mp 167°→168°C の塩を作ったが、エタノール、ベンゼン、アセトン、水、リグロイン、四塩化炭素他種々の混合溶剤を用い分 別再結晶をしたが分離できなかった。

D-(−)-およびL-(−)-α-フェニル-α-フェノキシプロピオン酸エチルエステル（III）

DL-と同様の方法でL-(+)-およびD-(−)-I より合成した。bp10 180°→182°C, d41 1.1111。

D-(−)-I [α]D25 +1.02°（無溶媒）

L-(−)-I [α]D25 -2.10°（無溶媒）

この旋光度はエタノール溶液に用いて逆転する。すなわち、エタノール溶液における濃度と旋光度の関係は、第2図のようある興味ある結果を得た。
L-(-)+アトロクチン酸エチルエステル (I) の接触還元

L-(-)-I ([α]_D^- +25.30° (無満媒)) 3.9 g (0.02 mole) を無水エタノール 50 cc に加え、ラネーニックル 10 g (混ったままで) を加え、常温常圧下で接触還元した。37 時間で 440 cc の水素を吸収した。還元をロ過し、エタノール留去後減圧蒸留し、bp_10 104°～106°C, 2.8 g ([α]_D^- -60.62° (ニートル, c=25.6)) を得た。これを 4N 硫酸で加水分解し、bp_10 137°～138°C の L-(-)-α-フェニルプロピオン酸 ([α]_D^- -74.2° (無満媒)) を得た。これに硫化チオールを作用させて得た α-フェニルプロピオン酸メチル (bp_10 83°～85°C) にアンモニア水を加え、L-(-)-α-フェニルプロピオン酸アミド (mp 93°～94°C, [α]_D^- +42.15° (75% エタノール, c=3.5)) を得た。

L-(-)+α-フェニル-α-クロロプロピオン酸エチルエステル (II) の還元

1. 接触還元: L-(-)-I ([α]_D^- +23.36° (無満媒)) 4.2 g (0.02 mole) を無水エタノール 50 cc に加え、パラシン-炭素 (Pd 7.7%) 3 g を加え常温常圧下で接触還元した。35 分間で 500 cc の水素を吸収した。還元生成物を L-(-)-I の場合と同様に処理し、bp_11 117°～120°C, 2.9 g ([α]_D^- +4.97° (無満媒)) を得た。またこれより L-(-)-α-フェニルプロピオン酸 (bp_10 156°～158°C, [α]_D^- +7.20° (無満媒)) を得て L-(-)-α-フェニルプロピオン酸アミド (mp 93°～94°C, [α]_D^- +2.00° (75% エタノール, c=4.0)) を得た。L-(-)-I 2.1 g を無水エタノール 25 cc にとかし、パラシン-炭素 1.5 g を加え、常温下水素ガスを絶えず 1 時間かき回した後、L-(-)-I の旋光度は変化しなかった。したがってこの条件で L-(-)-I のラセミ化は起こらない。

2. 亜鉛と酸酸による還元: L-(-)-I ([α]_D^- +2.36° (無満媒)) 3.5 g を水酸化 90 cc にとかし、亜鉛を加え常温常圧下で酸酸留去後エーテル抽出し、5% 炭素ナトリウム水溶液で酸酸を完全に除去後脱水酵素で脱水しエーテル留去後減圧蒸留し、bp_12 128°～131°C, 2.9 g ([α]_D^- +0.68° (無満媒)) を得た。また常法にしたがい α-フェニルプロピオン酸 (bp_13 154°～157°C, [α]_D^- +0.85° (エタノール, c=13.0)) を経て α-フェニルプロピオン酸アミド (mp 93°～94°C, [α]_D^- +0.39° (75% エタノール, c=10.2)) を得た。
（昭和 31 年 6 月 19 日受講）
（第 7 報） 接触還元分解ならびに接触還元の機構について
（三井生喜雄・今泉 真）
ベンジル基に酸素、塩素、イオウ等が結合している時は接触還元により容易に切断され、トルオールとこれら
の原子を有する化合物を生成することはよく知られており、この反応は酸化基、アミノ基等をベンジル基で保護
して還元した後、基にその性を廃しベンジルを生することができるので合成および天然物の構造決定にしばしば応用されている
1). ベンジル基よりベンジンヒドリル、トリヒドリルはさらに容易であり 3), またアルリ(allyl)基の場合も全く同様に切断される 4). われわれは環状のこのようなエチル
tも同様の反応を報告し、このような安定な環状エチルが容易に常圧下で切断できるように対
し、接触還元の機構がまだ明かでないので環状の
機構を呈出することはできないが、恐らくイオン反応であって水素結合イオンによるベンジル基の塩基への求核
反応であるとした 2).
著者はこの還元分解の反応機構を明確にすることによ
り一般接触還元の機構を明らかにすることができると考
え物理のアラルキルエーテル、アラルキルアミン 4)
およびベンジル基の種々の誘導体 5) の還元分解の
難易を比較し、その結果 C-O 間等の電子密度が減少す
るほど容易になり、この d gauche の炭素への H⁺イオンの求
核反応と考えるとよく説明ができることを報告した。し
かに Brenner の反応はフランアルコールの還元分解
によるメチルフラン生成反応において還元分解はカル
ボニルムイオンを縮て進行するという説を呈出して
いる。Brenner の説にしたがうならばこれは Sx1 の反
応であり、著者の考えによる時は Sx2 の反応である。ベ
ンジル基、アルリ基は共にカルボニルムイオン、カルバニ
オン、およびラジカル基をその共鳴構造により安定
化するため生成しやすく、化学構造を変化する方法によ
るのみではこれらのうちのいずれの機構によるかを決定
することは困難であるが、光学的活性体の還元分解を行
い、その開裂生成物の光学的性質を調べることによっ
どのいずれであるかを決定することができる。すなわち、
もしご Sx1 反応またはラジカル反応であるならば多少
の Walden 転位を伴うが大部分はラセミ化するはずで
あり、Sx2 反応ならば Walden 転位を含む光学活性体を
得る管である。前報①で報告したように α-フェニルα-
-フェノキシプロピノン酸エチルエステル（I）をラメ
ーニッケルを用い接触還元し、α-フェニルプロピノン酸
エチルエステル（I）を得たが、この際 L-(-)-I より
D-(-)-I を生成し、D-(-)-I よりは L-(-)-I を生
成した。しかもその時の光学活性の保持は 90% であった
明らかに H⁺ イオンの求核 2 次置换反応であり、著
者がききに注目したこの点を確認したことを証明した。
ところがフェノキシ基を遊離水酸基にえたアトロクラチ
ン酸エチルエステル（II）は L-(-) 活性体より L-(-)-
I を生成し、その光学活性の保持は同様に約 90% であ
るが、この場合は Walden 転位を伴っていない。したが
ってこの場合は Sx1 反応である。これらの結果はエチル
基、アルcoholののような C-O 間の還元分解はカルボ
ニオンまたはラジカルを生成して進行するものではなく
Sx2 反応と Sx1 反応がその化学的構造により起こるもので
あることを示している。すでに Bonner は 3) エタノール
中ラメーニッケルを用いる方法ではあるが、D-(-)-α-フェニルα-ベンズニアルコキシプロピノン酸
アミドより L-(-)-α-フェニルプロピノン酸アミドを生
じ、D-(-)-I よりは D-(-)-I を生じ、Walden 転
位する場合をしない場合とあることを報告し、著者の結
果と共に一致している。さらに Bonner は 4) 同様の方
法により光学活性体の α-フェニルα-フェノキシメチルラクト
プロピノン酸アミドおよび α-フェニルα-ベンズニアル
ルニアルプロピノン酸アミドはラセミ化した α-
-フェニルプロピノン酸アミドを生ずることを報告してい
3) 三井, 橋石, 本誌 71, 203 (1950); 三井, 井上, 本誌 72, 339 (1951).
4) 三井, 橋石, 本誌 75, 234 (1954).
5) 三井, 今泉, 本誌 75, 1066 (1954).
7) 今泉, 本誌 77, 1511 (1956).