結 語

ビスマスから亜鉛、カドミウム、鉛の分離をこれらのEDTA錯塩溶液のpHによる解離度の差と、陽イオン交換樹脂による吸着と併用して行った。すなわちビスマスはそのEDTA錯塩がpH1またはそれ以下で十分安定であるため陽イオンとして樹脂柱を通過するが、亜鉛、カドミウム、鉛はそれらのEDTA錯塩がpH1.3で完全に解離して、陽イオンとして樹脂に完全に吸着される。ゆえにこれらの混合溶液を樹脂柱を通過させることで容易に分離が可能であることを認めた。

（昭和30年10月、日本化学学会九州・中国・四国支部合同常会講演）

（大阪大学産業科学研究所、堺市）（昭和31年8月9日受理）

フルフラールジアセテートと無水マレイン酸のジエン反応

生成物について（第1～2報）

鈴木 洗次郎

（第1報）総合物の構造

フルフラールと無水マレイン酸の総合物について、その性質およびエーテル結合の開裂を研究し、α-ヒドロキシクロヘキシルアルデヒドが、酸によって2-ヒドロキシクロヘプタノンに転位する反応を適用できるかどうかを調べる目的でこの研究を行った。

フランやフルフルアルコールのジエン反応についてはDiels, Alder2) や Woodward3) らをはじめ多数報告されているが、フルフラールのジエン反応についてはほとんど報告がない。Johnson4) らはフルフラールジアセテートと無水マレイン酸の総合でmp126.5℃～127℃のものが得られる、という簡単な報告を出している。

フルフラールはそのまではジエン反応を起こさないので、シアセテートとして無水マレイン酸との総合を行った。溶媒にはシクロヘキサンを用い、シアセテートと無水マレイン酸を1:1.2のモル比で混合して、圧力蒸留95℃で20時間熱すると灰黑色の結晶塊が得られる。これを酸化エチルでアセトンで再結晶すると、mp137℃～138℃の白色針状結晶（I）が約25%収量で得られる。

この融点はJohnson らの報告と約10℃の差があるので、異性体ではないかということが考えられる。そこ

4) M. G von Campen, J. R. Johnson, ibid. 55, 430 (1933).
アルカリ性塩酸で銅鉄を生じ，またフクシン—亜硫酸液を塩色し，2,4-ジエトロフェニルヒドラゾンと反応するなど，アルデヒドの性質を示す。また滴定の結果二塩基性酸であることがわかった。

他

Diel's 67の報告にしたがい，フマルアルコールのアセチルートと無水マレイン酸を絡合させてⅡを得，これを還元してⅠaをつくる。この場合Ⅱは酸性では再結晶するように周囲を観察しているが，酷酸エチルと加熱すると結晶が析出しない状態になり，濃縮しても結晶は析出しない。しかし，一旦かかった酸あるいは濃縮液を2〜3日放置すると，収量は悪くなるが結晶が得られる。これは再結晶ではなく，成分に分解し再反応したと考えられる。それで著者は生成物を精製せずに還元した。Ⅱの性質や収率は文献とはほぼ一致した。

Ⅱを希塩酸または希アルカリ液で加水分解するとシカルボン酸アルコール（Ⅲ）が得られる。Ⅲをアルカリ性マグガン酸カリウムで酸化すると，mp 130〜140℃（発泡）の白色結晶が得られ，これをアセトント石油エーテルの混合溶液で再結晶を繰返すとmp 258〜260℃の針状結晶（Ⅳ）が得られる。Ⅳは水にとかしてから滴定すると，ほぼ3moleのアルカリを消費する。一方シカルボン酸アルデヒドと考えられるⅤを同様な方法で酸化するとmp 259〜260℃の酸が得られ，Ⅳと混融一致した。このことからⅤはⅢと同じ構造をもっていることがわかり，Ⅰは通常のシエン反応生成物であることが確認された。

以上の性質のうち，水と煮沸すると成分に分かれる点や，還元の結果などから通常のシエン反応と考えられる。Ⅰは塩化物付加しやすく熱しても分解しないので，Ⅰが水と煮沸すると容易に分解するのは，熱分解ではなく，水によってⅠのアセチルートが加水分解され，アルデヒド基が遊離の状態になるためであろう。

フマルの2-位にニトロ，シアノ，カルボニルキシなどの基がつくとシエン反応を起さないことが報告されている。シエンに電子求引基がつくと遊離反応を妨げることが考えられ，事実フマルアルコールそのままでは無水マレイン酸と反応しない。このことから逆に考えると，シエン反応生成物において，置換基の電子求引性が作用するような状態になれば，成分に分解しやすくなるであろうということが予想される。

1が通常のシエン反応生成物であることを確かめるために，さらに検討物質と関連づける実験を行った。

総括

フルフラールジアセチルとは同性の物質を示すが，還元，加水分解後，酸化してトリアセチル酸に縮む，既知物質から誘導したトリカルボン酸と比較して，通常のシエン反応生成物であること確認した。

実験の部

フルフラールジアセチル

フルフラールと無水フタル酸を1:2.5moleの割合で
（155）鈴木：フルラールジアセチルと無水マレイン酸のジエン反応生成物について（第1～2報）

フルラールジアセチルと無水マレイン酸の総合
フルラールジアセチルと無水マレイン酸は、いずれも蒸留したものを用い、1:1.2 moleの割合で混合し、
広口の試験管で圧壺に入れ、ジアセチルの5倍量の
シクロヘキサン（無水）を加える。密閉して水中に沈め、
95℃に20時間熱して放置すると黒色の結晶が得られる。
この結晶を再結晶すると、適当な溶媒を用いて、
ジエン反応生成物を再結晶する。この中での結晶化
は、ジアセチルを用いた方法を例示すると、適当な
溶媒を用いて、ジエン反応生成物が得られる。この
方法で得られた結晶は、mp 134～136℃である。
収率 23～26%。さらに再結晶を経て、
再結晶すると mp 137℃～138℃になる。

分析
実測値 C 52.41%, H 4.39%

C₁₂H₁₂O₄ としての計算値 C 52.70%, H 4.05%

I とメタノールとの反応

I を10倍のメタノールと2時間煮沸脱水すると、結晶
は水殆どとれてゆく。つぎに大部分のメタノールを留
去すると結晶物が残る。これを放置すると徐々に結晶化
する。結晶状態で再結晶すると、まずに結晶状態が
析出する。結晶状態の結晶が析出する。次のところが
結晶状態の結晶のみである。mp 159～160℃（Ia）で、
これを再結晶えて再結晶すると、ただちに結晶状態の
結晶が得られる。Ia の結晶を1/3 量に濃縮すると、
結晶状態の結晶が得られる。結晶状態の結晶の
結晶状態の結晶を機械的に分けて結晶状態の結晶を再結晶する
と mp 138～140℃のIb が得られる。C₁₂H₁₂O₄ と
して1/10N 水酸化カリウムで処理するとIa, Ib は
それぞれ 0.98, 0.96mole のアルカリを消費する。

赤外吸収スペクトルは 10.9 μ にIa は小さな吸収を
有するほかは、ほとんどIa と Ib は一致する。

I と水との反応

I を水と煮沸すると数分で溶解する。10 分間煮沸し
た後、液の一部をとってセミカルパゾルプチル化
と水酸化カリウムを加えると白色結晶が析出する。メタノールで
再結晶すると mp 195～201℃となり、フルラール
セミカルパゾル mp 201～202℃と混融して融点降下
しない。この液を水に加え、エーテルで抽出し、エーテルを留去する
と、結晶を析出する。この液をさらに結晶
が析出する。mp 137～139℃を示す。マレイン酸と混
融して融点降下しない。

I と臭素との反応

I をクロロホルム中1 mole 当量の臭素を加え、1時
間煮沸還元させ、クロロホルムを留去すると原料がほと
んどの大部分回収された。またこの間に臭素の赤色の退色
は認められなかった。

I の接触還元

I 10 g を 50 cc のメタノールに浮遊させ、パラジウム
粉あるいは Raney-Nickel 0.5 g を加え、常温常圧で還
元する。約 10 時間で 800 cc (1.05 mole) の水銀を吸
収する。この間には水銀の結晶が一度として、ふたたび
白色結晶が析出するのが見られる。結晶を触媒とともに
遠心し、蒸留水で再結晶すると mp 178～181℃の
結晶を得る。さらに再結晶すると mp 181～182℃と
なる。

分析
実測値 C 51.92%, H 4.61%

C₁₂H₁₂O₄ としての計算値 C 52.35%, H 4.70%

I の収率は加温して還元した場合および還元に長時間を
要した場合には著しく減少する。

I を水に通じたメタノール溶液を濁液にして放置すると、
やや粘稠物を含んだ結晶塊が得られる。mp 200℃、
結晶状態で再結晶すると mp 157～160℃(M) の白色
結晶状結晶 (M) が 6～8g で得られる。さらに再結晶して
mp 163～164℃(M) のものを分析した。

メタノールの母液および残留物を液をつめて濁液すると粘稠
物が約1g で得られる。

分析
実測値 C 51.41%, H 5.90%

C₁₂H₁₂O₄ としての計算値 C 50.99%, H 5.45%

定常 (0.3438g) はアルカリ 11.3×10⁻⁴ mole 消
費。理論消費量 10.5×10⁻⁴ mole

(0.1216g) を水酸化カリウム溶液と煮沸後塩酸で逆
滴定した。アルカリ消費量 14.368×10⁻⁴ mole。理論消
費量 3.679×4×10⁻² = 14.719×10⁻⁴ (mole)。

1.4-エンドキシン-2,3-ジカルボキシシクロヘキシルアルデヒド（V）

Ⅰ、Ⅱおよび前項のメタノール液から得られる粘菌を10%塩酸と1時間煮沸し、減圧濃縮して放置すると結晶塊が得られる。収率90〜95%、mp 165〜169°C（発泡）。収率および融点は同じ場合でも大差ない。少量の水で再結晶するとmp 170〜172°C（発泡）のプリズム状結晶になる。

分析 実測値 C 50.45%，H 4.92%

C₈H₁₀O₄としての計算値 C 50.47%，H 4.67%

1/10N（f=1.0219）水酸化ナトリウムによる滴定値

試料 0.102 g（4.77×10⁻⁴ mole）

滴定値 9.18 cc（9.38×10⁻⁴ mole）

計算値 9.33 cc（9.54×10⁻⁴ mole）

アンモニアーアルカリに硝酸鉻で試薬を生じ、フクシノン硫酸鉻を染色する。

2,4-ジーコトフェニルヒドラゾン mp 142°C（発泡）

3-アセトキシメチル-3,6-エンドキシン-ヘキサヒドロ無水フルアルディ（VII）

Diels, Alder の報告2) にしたがって、フルリルアルコールのアセタートと無水マンガン酸をエーテル中3日放置してmp 106〜110°Cの結晶（文献値 114°C）を得た。収率 92〜95%、酸化鉄と加熱すると溶解する。この溶液をそのまま、あるいは濃縮して放置すると、2日後より徐々に結晶が析出する。mp 106〜109°C。

濃縮はヘキシル酸を使用し、メタノール中で行った。原料 30 g。水蒸気吸収量 3.28 l。揮発を試薬ととどめに浸し、酸化鉄で抽出する。抽出液より 19.5 g（mp 140〜143°C）（文献値 142〜143°C）の白色結晶を得られ、メタノール溶液からは 9 g（mp 96〜103°C）の結晶が得られる。9 gの一部は塩化物の殻が弱いものと思われる。

3-ヒドロキシメチル-3,6-エンドキシン-ヘキサヒドロフルタル酸（VIII）

Ⅲを 10%の水酸化ナトリウムと30分煮沸し、冷却後酸性にして減圧濃縮する。アセトンで抽出し、大部分のアセトンを除去すると針状結晶が得られる。mp 190〜193°C（186°C で半融）。収率約70%。

3,6-エンドキシンシクロヘキサン-1,2,3-トリカルボン酸（IX）

Ⅲ 1 g を水酸化カリウム 1.5 g、水 10 cc の液にとかし、水冷してかきませながら過マンガン酸カリウム 1 gを40 ccの水にとかした液を徐々に加える。加え終ってから3時間かきませてろ過する。ろ液を塩酸酸性にして減圧で濃縮乾燥する。つぎにアセトンで抽出し、アセットンを留去すると結晶が得られる。mp 130〜140°C（発泡）。アセトン・石油エーテルで再結晶すると、油状物とさらに結晶が析出する。この結晶を同溶媒で再結晶するとmp 258〜260°Cの白色結晶になる。収量 0.2 g。

Vを同条件で酸化し、処理するとmp 259〜260°Cの白色結晶が得られる。収量は V 1 g より 0.6 g。前者と混融すればmp 258〜260°Cを示す。

滴定：使用アルカリは1/10N（f=1.0219）水酸化ナトリウム。試料 0.100 g。アルカリ消費量 12.0 cc（12.26×10⁻⁴ mole）、計算値 12.7 cc（13.04×10⁻⁴ mole）。

（第2報）* エーテル結合の開裂反応

エーテル結合の開裂については水酸化水素を飽和した酢酸化エーテルを用いる方法。塩化亜鉛を触媒として塩化アンチルを、あるいは無水酢酸を用いる方法が知られている。

これらはエンドキシンクロヘキサヒドロフランに適用され、その例を示すと次式のようである。

\[\text{Br} \quad \xrightarrow{\text{HBr}} \quad \text{Br} \quad \text{Br} \]

\[\text{AcCl, ZnCl₂} \quad \xrightarrow{\text{R, } \text{AcO}} \quad \text{Cl} \quad \text{Cl} \]

また水酸化水素を飽和した酢酸を蒸留中160°Cに熱すると、尿素含有化合物（mp 90〜91°C）と少量のXが得られた。Vおよび酸無水物（VII）を同条件で処理すると、いずれもXと少量のXが得られる。

Nを水と加熱すると容易にXに変化する。Xは尿素を含まず、mp 166〜167°Cである。Xを直接アルカリで滴定すると1 moleのアルカリを消費し、アルカリと煮沸後に

* 化合物番号および文献番号は第1報と共通。
7) R. Paul, Compt. rend. 200, 587(1939); 211, 645(1940); Bull. soc. chim. 8, 369 (1941); C. L. Wilson, J. Chem. Soc. 48 (1945).