水酸化で臭素を作用させると プロム化合物を与え (mp 60°〜62°C)、試品と混融して確認した。166°〜 200°C の痕は酸およびアルカリによって中性化、酸性 部、塩基性部に分ける。中性部は α-クロレゾールメチルエ テルであり、これに同様に述べたようにして確認した。 酸性部は α-クロレゾールで希アルカリにとかしてからモ ノクロル酢酸を加えて混ぜて α-クロレゾール-α-クロレゾー ルのほかにフェノールが混在しており誘導体の融点は非 常に低下する (約 130°〜148°C)。そこで α-クロレゾール-α-クロレゾール (mp 102°C) の纯品を用いて混融 曲線を調べ、水素化生成物から得られた混合物の結晶 の融点をこれに比較してその量を求めた。塩基性部はき わめて微量の油状物質であるが、カルビアルミン反応が 陽性であることから第一アミンであることがわかった。 (昭和 32 年 4 月、日本化学会第 10 年会講演)

6) 田中、木村 83, 789 (1957).

第 3 プチアルコール-水混合溶媒における臭素酸銀の溶解度

宮 本 弘

第 3 プチアルコール-水混合溶媒における臭素酸銀の溶解度を 20°, 25° および 30°C におい て測定した。溶媒のプチアルコールの濃度は 0〜58.542% の 11 種で、それらの誘電率は 80.37 〜27.93 の範囲であった。ついで、難溶塩の溶解度と溶媒の誘電率との関係を示す既報1)の理論式 を中心に、測定結果を考察した。理論式において、もし温度一定で溶媒和半径もはば一定であると 假定すれば、溶媒の誘電率が 80〜60 の範囲においては、溶解度の対数は誘電率の逆数に近似的に 比例するが、60 以下では著しい偏差を生じ、あらたな観点から考察が必要となる。

また理論式を用いて算出した溶媒和半径は 1〜3 Å の範囲であった。

緒 言

無機塩の溶解度と溶媒の誘電率との関係を考察するこ とが主な目的で、すでに 1, 4-ジオキサン-2, ジオキサン-2, エタノール-2, エタノール-3, エタノール-4, テトラヒドロフラン-3 およびアセトン-3

-水混合溶媒における臭素酸銀の溶解度を測定し、考慮 して報告した。本報告においてはこれらに引き続き、 水と自由な割合に混合する 1 個アルコールのうちで、炭 素数の最大な第 3 プチアルコールを用い、これと水との 混合溶媒における臭素酸銀の溶解度を 20°, 25° およ び 30°C において測定した。溶液には前報1)において使 用した混合溶媒の誘電率に相当する 0〜58.542% まで 11 種の濃度のプチアルコール-水混合溶媒を用い、そ れらの誘電率は、80.37〜27.98 の範囲であった。つい で、臭素酸銀の溶解度の測定値とをもとに、難溶塩の 溶解度と溶液の誘電率との間に、誘電率比較的大なる有

機溶媒水溶液において近似的に成立した理論式が、誘電 率の広範囲におわり、また溶解度比較的大なる塩の場合 にも適用されるかどうかについて検討し、なお、三の 考察を加えたので、その結果について報告する。

ここでプチアルコールの溶媒としての性質を 検討してみると、また水と自由に混合しうる 5 種の 1 個アルコールについてその誘電率を比較してみると、メタノール 33.7±1.0 (20°C) がもっとも大きく、エタノール 25.7±3 (20°C), n-プロピルアルコール 21.8±4 (20°C), イソプロピルアルコール 26±1 (20°C), および第 3 プチアルコール 11.4 (19°C) で、n-1 価アルコール相 互では、その炭素数の増加と共に誘電率は減少する。水 と自由の割合には混合しない n-プチアルコールまで 含めて、それらの誘電率を比較しても上と同様なことが いえる。一方側鎖を有するアルコールについてはこの関 係はみられず、不規則になる。しか前前述の 5 種のアル コールのうち第3プチアルコールの誘電率が最も小さ い。

実験

（1）第3ブチルアルコールの精製

溶媒として用いたブチルアルコールは、関東化学1級品で、これをつぎに精製して用いた。まず粗アルコール約2 lに、200℃～220℃において新らしく焼いた炭酸ガリウムを加え、一昼夜放置後、これをガラス球を精留管（高さ35 cm）のついた蒸留装置で蒸留する。この留分について再結晶を数回行った後、精製金属ナトリウムを投入して、ふたたび前記の蒸留装置により精留し、常圧においてbp 81.6℃～82.1℃の留分を採取した。

第3ブチルアルコールは吸湿性が大で、空気中の水分を容易に吸収するおそれがあることが指摘されているので、精製に際してはこの点に十分注意し、乾燥剤を通じて大気と接するように考慮して精留を行った。

精製ブチルアルコールの密度測定値を文献値と比較したものを第1表に示す。測定には、容量30 ccのスプレンジル型ビックノメーターを用い、なお大気中の温気をさけて操作した。密度測定より求めた精製アルコールの純度は99.66%であった。

<table>
<thead>
<tr>
<th>温 度 (℃)</th>
<th>実 験 値</th>
<th>文 献 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.7812</td>
<td>0.7806</td>
</tr>
<tr>
<td>30</td>
<td>0.7764</td>
<td>0.77620</td>
</tr>
</tbody>
</table>

（2）第3ブチルアルコール-水混合溶媒の調製

溶媒調製に使用した水は、前報において同様な電導度度で、ブチルアルコールは上記のように精製したものを利用、重量法で2.781%から58.542%まで10種の混合溶媒を調製した。それらの誘電率は77.96から27.93の範囲である。

（3）臭素酸銀の溶解度測定

上記のように調製した溶媒および小過剰の溶質を約300 ccの石英ガラス製鉄管に密閉し、20℃、25℃および30℃において各温度とも溶解差±0.02℃に調節した恒温槽の中のかきませ装置に取付け、72時間回転すりませ、臭素酸銀を飽和させて後分析に供した。飽和に要するすりませ時間は、すでに報じた数種の溶媒と同じに、72時間で十分であった。分析方法はシクロプロプレッセインを用いる容量分析法によった。

結果および考察

（1）実験結果

第2，3および4表（次頁）に20℃，25℃および30℃における臭素酸銀の溶解度と、この研究において必要な諸数値を示した。各表において、溶解度はS(mole/l)およびSp(mole 分率)であるとした。溶解度の測定値の公算誤差は±0.01～0.03×10^{-3} mole/lであった。混合溶媒の誘電率はÅkeröfの値より図示的に求めた値、密度はいずれも20℃、25℃および30℃の測定値である。

（2）溶解度と溶媒の誘電率との関係

既報と同様に、溶解度の測定結果にもとづいて、つぎの理論式を導き考察する。

\[
\ln \frac{C_0}{C_1} = \frac{Z^2e^2}{2RTs} \left(\frac{1}{D_1} - \frac{1}{D_0} \right) \left(\frac{Z^2e^2}{2kT} \right) \sqrt{\frac{8\pi N Z^2 e^2}{10^4 kT} \left(\frac{C_1^{1/2}}{D_1^{1/2}} - \frac{C_0^{1/2}}{D_0^{1/2}} \right) (1)}
\]

第1図 臭素酸銀の溶解度の対数と溶媒の逆数誘電率との関係

第2表 第3ブチルアルコール-水混合溶媒における臭素酸銀の溶解度（20℃）

<table>
<thead>
<tr>
<th>第3 ブチルアルコール (wt%)</th>
<th>密度</th>
<th>誘電率</th>
<th>溶解度</th>
<th>log S + 3</th>
<th>100/D</th>
<th>log D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9982</td>
<td>30.37</td>
<td>7.28</td>
<td>2.62</td>
<td>0.8621</td>
<td>1.244</td>
</tr>
<tr>
<td>2.781</td>
<td>0.9936</td>
<td>77.96</td>
<td>6.55</td>
<td>2.41</td>
<td>0.8162</td>
<td>1.283</td>
</tr>
<tr>
<td>4.882</td>
<td>0.9903</td>
<td>76.13</td>
<td>6.02</td>
<td>2.25</td>
<td>0.7796</td>
<td>1.314</td>
</tr>
<tr>
<td>10.555</td>
<td>0.9829</td>
<td>71.27</td>
<td>4.58</td>
<td>1.79</td>
<td>0.6609</td>
<td>1.403</td>
</tr>
<tr>
<td>15.943</td>
<td>0.9762</td>
<td>66.51</td>
<td>3.94</td>
<td>1.62</td>
<td>0.5955</td>
<td>1.504</td>
</tr>
<tr>
<td>20.539</td>
<td>0.9690</td>
<td>62.45</td>
<td>3.49</td>
<td>1.49</td>
<td>0.5428</td>
<td>1.601</td>
</tr>
<tr>
<td>25.336</td>
<td>0.9594</td>
<td>58.00</td>
<td>3.11</td>
<td>1.38</td>
<td>0.4928</td>
<td>1.724</td>
</tr>
<tr>
<td>30.860</td>
<td>0.9474</td>
<td>53.41</td>
<td>2.58</td>
<td>1.21</td>
<td>0.4116</td>
<td>1.872</td>
</tr>
<tr>
<td>38.712</td>
<td>0.9293</td>
<td>46.47</td>
<td>2.10</td>
<td>1.07</td>
<td>0.3222</td>
<td>2.152</td>
</tr>
<tr>
<td>48.447</td>
<td>0.9066</td>
<td>37.87</td>
<td>1.56</td>
<td>0.89</td>
<td>0.1931</td>
<td>2.641</td>
</tr>
<tr>
<td>58.542</td>
<td>0.8830</td>
<td>29.98</td>
<td>1.14</td>
<td>0.74</td>
<td>0.0569</td>
<td>3.336</td>
</tr>
</tbody>
</table>

第3表 第3ブチルアルコール-水混合溶媒における臭素酸銀の溶解度（25℃）

<table>
<thead>
<tr>
<th>第3 ブチルアルコール (wt%)</th>
<th>密度</th>
<th>誘電率</th>
<th>溶解度</th>
<th>log S + 3</th>
<th>100/D</th>
<th>log D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9971</td>
<td>78.54</td>
<td>8.59</td>
<td>3.90</td>
<td>0.9340</td>
<td>1.273</td>
</tr>
<tr>
<td>2.781</td>
<td>0.9922</td>
<td>76.13</td>
<td>7.71</td>
<td>2.84</td>
<td>0.8871</td>
<td>1.314</td>
</tr>
<tr>
<td>4.882</td>
<td>0.9890</td>
<td>74.36</td>
<td>7.13</td>
<td>2.67</td>
<td>0.8531</td>
<td>1.345</td>
</tr>
<tr>
<td>10.555</td>
<td>0.9812</td>
<td>69.54</td>
<td>6.04</td>
<td>2.36</td>
<td>0.7810</td>
<td>1.438</td>
</tr>
<tr>
<td>15.943</td>
<td>0.9738</td>
<td>64.85</td>
<td>4.80</td>
<td>1.97</td>
<td>0.6812</td>
<td>1.542</td>
</tr>
<tr>
<td>20.539</td>
<td>0.9659</td>
<td>60.84</td>
<td>4.35</td>
<td>1.85</td>
<td>0.6385</td>
<td>1.644</td>
</tr>
<tr>
<td>25.336</td>
<td>0.9559</td>
<td>56.41</td>
<td>3.73</td>
<td>1.66</td>
<td>0.5717</td>
<td>1.772</td>
</tr>
<tr>
<td>30.860</td>
<td>0.9436</td>
<td>51.83</td>
<td>3.03</td>
<td>1.43</td>
<td>0.4814</td>
<td>1.929</td>
</tr>
<tr>
<td>38.712</td>
<td>0.9252</td>
<td>45.06</td>
<td>2.41</td>
<td>1.23</td>
<td>0.3820</td>
<td>2.219</td>
</tr>
<tr>
<td>48.447</td>
<td>0.9024</td>
<td>36.74</td>
<td>1.74</td>
<td>0.99</td>
<td>0.2405</td>
<td>2.722</td>
</tr>
<tr>
<td>58.542</td>
<td>0.8787</td>
<td>28.91</td>
<td>1.31</td>
<td>0.85</td>
<td>0.1173</td>
<td>3.460</td>
</tr>
</tbody>
</table>

第4表 第3ブチルアルコール-水混合溶媒における臭素酸銀の溶解度（30℃）

<table>
<thead>
<tr>
<th>第3 ブチルアルコール (wt%)</th>
<th>密度</th>
<th>誘電率</th>
<th>溶解度</th>
<th>log S + 3</th>
<th>100/D</th>
<th>log D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9957</td>
<td>76.73</td>
<td>10.02</td>
<td>3.59</td>
<td>1.0009</td>
<td>1.303</td>
</tr>
<tr>
<td>2.781</td>
<td>0.9909</td>
<td>74.22</td>
<td>9.08</td>
<td>3.34</td>
<td>0.9581</td>
<td>1.347</td>
</tr>
<tr>
<td>4.882</td>
<td>0.9876</td>
<td>72.47</td>
<td>8.43</td>
<td>3.15</td>
<td>0.9258</td>
<td>1.380</td>
</tr>
<tr>
<td>10.555</td>
<td>0.9794</td>
<td>67.79</td>
<td>7.13</td>
<td>2.79</td>
<td>0.8531</td>
<td>1.475</td>
</tr>
<tr>
<td>15.943</td>
<td>0.9713</td>
<td>63.22</td>
<td>5.86</td>
<td>2.40</td>
<td>0.7679</td>
<td>1.582</td>
</tr>
<tr>
<td>20.539</td>
<td>0.9627</td>
<td>59.30</td>
<td>5.21</td>
<td>2.22</td>
<td>0.7168</td>
<td>1.686</td>
</tr>
<tr>
<td>25.336</td>
<td>0.9525</td>
<td>55.04</td>
<td>4.57</td>
<td>2.04</td>
<td>0.6599</td>
<td>1.817</td>
</tr>
<tr>
<td>30.860</td>
<td>0.9398</td>
<td>50.44</td>
<td>3.73</td>
<td>1.75</td>
<td>0.5717</td>
<td>1.983</td>
</tr>
<tr>
<td>38.712</td>
<td>0.9214</td>
<td>43.76</td>
<td>2.91</td>
<td>1.48</td>
<td>0.4639</td>
<td>2.285</td>
</tr>
<tr>
<td>48.447</td>
<td>0.8983</td>
<td>35.66</td>
<td>2.06</td>
<td>1.17</td>
<td>0.3139</td>
<td>2.804</td>
</tr>
<tr>
<td>58.542</td>
<td>0.8745</td>
<td>27.93</td>
<td>1.48</td>
<td>0.96</td>
<td>0.1703</td>
<td>3.580</td>
</tr>
</tbody>
</table>
第2図 硫酸鉛の溶解度の対数と溶媒の逆数電導率との関係

（1）において、右辺第2項の影響が小さく、温度一定の場合、溶媒和半径 \(r \) も一定であると仮定すると、溶解度の対数は溶媒の誘電率の逆数に近似的に比例することとなる。第1図は臭素酸鉄の溶解度 (\(\log S+3 \)) と溶媒の誘電率 (100/D) との関係を示し、第2図は硫酸鉛の溶解度 (100/D) についてのそれらを示した。第 1, 2 図について前述の理論式との関係についてみると、いずれも測定値の全濃度範囲にわたって成立することはない。さらに第1図について検討してみるとブチルアルコール濃度のうすい部分すなわち誘電率の比較的大なる 80～75 程度 (100/D, 1.2～1.3) の 3～4 点については直線関係を示すが、濃度大になるとともにその偏差は大になる。また第2図についてみると臭素酸鉱の場合よりも直線とみなしうる範囲はやや大で誘電率 60 ぐらい (100/D, 1.6) までおおよぶが、この場合もさらに誘電率が少なかったと著しい偏差を示すことくなる。これから、臭素酸鉱および硫酸鉛の溶解度と溶媒の誘電率との間に、一般に希薄溶液について多くの理学的価値が近似的に成立するように、混合溶媒の濃度がうすく、誘電率の小さい場合には既報12の理論式も近似的に成立する。また硫酸鉛の溶解度の方が臭素酸鉱のそれよりも小さいため、理論式の満足させる範囲も拡大されるものと考えられる。

また臭素酸鉱について、\(\log S+3 \) と \(\log D \) との関係を図示すれば第3図のようになる。第1図と第3図を比較してみると、後者がやや直線とは少なからず大になるが、測定値の全濃度範囲について完全には満足しない。この点については Davis12) らが同様な関係を指摘し、また著者の既報の一連の研究においても同様なことを指摘してきた。

しかし、いずれにしても誘電率を 20 付近まで小さくした混合溶媒における無機塩電解質の溶解度と溶媒の誘電率との関係を十分満足に示することはできない。さらに種々の溶媒や溶媒を用いて実験的資料を加え、考察して行かなければならないと思われる。

また先にふれたようにブチルアルコールの異性体相互の溶解度におよぼす影響も構造化学上興味ある問題と考えられる。しかし第3ブチルアルコール以外の異性体についてはブチルアルコール系の誘電率の測定値はなく、いずれも純粋なアルコールの値が知られているにすぎない。よって本報告において十分検討できないから、これらの資料を得てふたたび検討することにする。

（3） 溶媒和半径の算出

（1）式を用いて算出した。第 3 ブチルアルコール水混合溶媒における臭素酸鉱の溶媒和半径を第 5 表（次頁）に示す。溶媒和半径は陰陽両イオンの逆数平均値を定義する。表中 A は（1）式により、B は（1）式の右辺第2項の影響を除いたため、第2項を除いた式より算出した値である。C_{10}～C_{15}, D_{8}～D_{10} はそれぞれブチルアルコール濃度が 0～59% の 11 種における溶解度と溶媒の誘電率を示す。溶媒和半径は誘電率や温度の変化によって著

11) 小泉, 宮本, 戒, 本誌 78, 1155 (1957).
<table>
<thead>
<tr>
<th>測定温度</th>
<th>溶媒和半径</th>
<th>A</th>
<th>B</th>
<th>A/B</th>
<th>差の百分率</th>
<th>溶媒和半径</th>
<th>A</th>
<th>B</th>
<th>A/B</th>
<th>差の百分率</th>
<th>溶媒和半径</th>
<th>A</th>
<th>B</th>
<th>A/B</th>
<th>差の百分率</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>1.045</td>
<td>1.038</td>
<td>0.007</td>
<td>0.67</td>
<td>1.055</td>
<td>1.048</td>
<td>0.007</td>
<td>0.66</td>
<td>1.241</td>
<td>1.242</td>
<td>0.001</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>1.053</td>
<td>1.043</td>
<td>0.010</td>
<td>0.95</td>
<td>1.085</td>
<td>1.079</td>
<td>0.006</td>
<td>0.55</td>
<td>1.224</td>
<td>1.223</td>
<td>0.001</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td>1.210</td>
<td>1.206</td>
<td>0.004</td>
<td>0.33</td>
<td>1.297</td>
<td>1.296</td>
<td>0.001</td>
<td>0.08</td>
<td>1.426</td>
<td>1.433</td>
<td>0.007</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2CoD2Do</td>
<td>1.384</td>
<td>1.386</td>
<td>0.002</td>
<td>0.14</td>
<td>1.514</td>
<td>1.524</td>
<td>0.010</td>
<td>0.66</td>
<td>1.599</td>
<td>1.617</td>
<td>0.018</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3CoD3Do</td>
<td>1.594</td>
<td>1.606</td>
<td>0.012</td>
<td>0.75</td>
<td>1.659</td>
<td>1.676</td>
<td>0.017</td>
<td>1.03</td>
<td>1.773</td>
<td>1.803</td>
<td>0.030</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4CoD4Do</td>
<td>1.710</td>
<td>1.727</td>
<td>0.017</td>
<td>0.99</td>
<td>1.746</td>
<td>1.766</td>
<td>0.020</td>
<td>1.15</td>
<td>1.862</td>
<td>1.894</td>
<td>0.032</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5CoD5Do</td>
<td>2.042</td>
<td>2.077</td>
<td>0.035</td>
<td>1.71</td>
<td>2.044</td>
<td>2.082</td>
<td>0.038</td>
<td>1.86</td>
<td>2.135</td>
<td>2.186</td>
<td>0.051</td>
<td>2.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6CoD6Do</td>
<td>2.516</td>
<td>2.586</td>
<td>0.070</td>
<td>2.78</td>
<td>2.467</td>
<td>2.538</td>
<td>0.071</td>
<td>2.88</td>
<td>2.532</td>
<td>2.614</td>
<td>0.082</td>
<td>3.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10CoD10Do</td>
<td>3.094</td>
<td>3.216</td>
<td>0.122</td>
<td>3.94</td>
<td>3.123</td>
<td>3.259</td>
<td>0.136</td>
<td>4.35</td>
<td>3.133</td>
<td>3.328</td>
<td>0.145</td>
<td>4.63</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

干異なるが、濃度がうすく、さきに直線関係の成立するものを指摘した部分についてはほぼ1Åを示す。また右辺第2項の影響は約1%で、濃度の増加と共に増加する。

最後に、本研究を行うにあたり種々御指導下さった、本学化学教室小泉英先生に厚く感謝いたしますと共に種々御援助下さいました当教室の諸先生に感謝いたします。

本研究の費用は昭和31年度文部省科学研究助成金によった。深く謝意を表する。

（昭和32年4月、日本化学会第10年会講演）

（東北大学工学部応用理学教室、仙台市）（昭和32年5月6日受理）

還元分解に関する研究（第9報）

光学活性体の還元分解について（その2）

チョエーテル類の接触還元分解

今 泉 眞

接触還元分解の機構を究明する手段の一つとして光学的活性なチョエーテル（d(+)-α-フェニル-α-エチルル服アブミ酸アチルイミド（V）、d(-)-α-フェニル-α-エチルル服アブミ酸アチルイミド（W））を合成し、ラネーニッシュ触媒を用いて炭素-イオウ結合間の接触還元分解を行い、還元分解後の立体配置関係を調べた結果、d(+)-Vおよびd(-)-Wは共に大部分ラミミ化したd-フェニルル服アブミ酸アチルイミド（W）を生成した。この結果よりC-S結合間の接触還元分解は、まず触媒に化学吸着されてC+*S-または-C+S-に開裂し、これに触媒より2e+2H+が移るか、または水素分子の作用により行われたと考えられる。

還元分解の機構を明らかにし、さらにこれにより接触還元の機構を示明にする目的で、光学的活性なアトロハチクタアブミ酸アチルイミド（I）、α-フェニル-α-フェニルル服アブミ酸アチルイミド（II）およびα-フェニル-α-クロロルル服アブミ酸アチルイミド（III）をラネーニッシュ触媒またはラジウム-炭素触媒を用い、常温常圧下の接触還元で還元分解し、還元分解前後にお