高周波放電の化学作用に関する研究 (第 6～7 報) *

宮崎 正蔵・高橋 サク

昭和 32 年 3 月 23 日受理

(第 6 報) メタン、窒素、アンモニア間反応による
シアン化水素の生成について

封鎖系内でメタン、窒素、アンモニアの混合ガス中で 100 M cycle の高周波電流を用いてシアン化水素の生成を行った。シアン化水素の生成は高周波放電の下ではメタン一窒素系、メタン一アンモニア系のいずれもも進むことが知られているが、メタン一アンモニア系に窒素を添加することによってシアン化水素の生成速度の増加するの放電帯内で窒素がエネルギー伝達の効果をするためとするのが適切であること示した。

高周波単極放電によるメタン、アンモニア間反応でのシアン化水素の生成に際して共存する水素によって生成速度は比較的強い抑制作用をうけて低下するが、このような反応の進行に伴ない共存するアンモニアの分解によって生成する窒素の反応に対する影響を単にメタン一窒素間反応でのシアン化水素の生成と考えた形式の作用を全く無視することはできないであろう。すなわちときに著者らはアンモニアの高周波電気光放電による分解を実測して共存する窒素はこのときにエネルギーの伝達体として作用するが、このような作用の存在はメタン、窒素、アンモニア間反応においても当然予想されるところであって、しかもかかる効果の存在を示すことも解しろうシアン化水素の生成量の増加が窒素の添加によって得られるのを著者らは認めている。しかしこのときの窒素の作用についてはまだ明確にされない点が多いのでここにメタン一窒素一アンモニア系については封鎖系内反応でシアン化水素の生成を行い窒素の反応に対する効果を明らかにしようとするのであろう。実測装置および測定方法

実測に用いた装置の概略ならびに測定方法は前報におけると全く同一である。すなわち反応は封鎖系内反応として行い、反応を進める放電帯の生成反応管内下端から挿入された単極にかかる高周波電流によってある。

このとき使用する高周波電流は周波数 100 M cycle で最高出力は 1 kW であるが、反応に当たっては単極にかかる出力を一定に下もつため発振管 7T24R に流れる陽極電流、電圧を一定として行っている。また反応ガスはメタン、窒素およびアンモニアであるが、使用に当たってはあらかじめ常法によって十分精製し、ことに酸素、水は十分除去しており、かかるガスを使用して一定時間

実測値

<table>
<thead>
<tr>
<th>t(min)</th>
<th>P_{N_2}(cmHg)</th>
<th>P_{CH_4}(cmHg)</th>
<th>P_{NH_3}(cmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.50</td>
<td>9.20</td>
<td>7.00</td>
</tr>
<tr>
<td>2</td>
<td>11.50</td>
<td>9.20</td>
<td>7.00</td>
</tr>
<tr>
<td>3</td>
<td>11.50</td>
<td>9.20</td>
<td>7.00</td>
</tr>
<tr>
<td>4</td>
<td>11.50</td>
<td>9.20</td>
<td>7.00</td>
</tr>
<tr>
<td>5</td>
<td>11.50</td>
<td>9.20</td>
<td>7.00</td>
</tr>
</tbody>
</table>

第 1 図

* 前報 (第 5 報)，本誌 78，1447（1957）。
1）宮崎，高橋，本誌 76，513（1955）。
2）宮崎，高橋，本誌 77，1176（1956）；78，228（1957）。
3）宮崎，高橋，本誌 76，659，1345（1955）。
反応を行った結果生成されるシアン化水素量は硝酸銀滴定法で決めている。

実測結果とその考察

第1〜5図は上述のような方法でシアン化水素素の生成反応を進めた際の生成率曲線で、圧力に焦着をしたシアン化水素量 (x) の原料メタン量 (a) に対する百分率を、横軸に反応時間 (t) をとって両者の関係を示している。また第6図は実測値から算出したシア

ン化水素の生成初期速度 v0 を縦軸にとり、反応ガス中の [NH3] を横軸にとって両者の関係を示している。この収率曲線はいずれも全圧 150 mmHg の下で單極トーチ放電によって得られているものであり、ガス圧の大小により放電状況に変化が生じて反応状況に著しい異なりが現われるとは考えられないが、実測結果はメタン初濃度
第 6 図

増加した際の生成率曲線であるが、反応は [CH₄] の増加と共に終了までに長時間を要するようになり、[CH₄] の増加と共に反応速度の低下を示す結果となっている。この二つの場合に見られる放電効果は第 1 図におけるアンモニア共存の場合とほぼ同一で炭素の析出はほとんどない。

第 4,5 図はメタン初濃度が 48 および 57 mmHg のものであるが、これらは第 1 図の反応に不充分でアンモニア素の生成反応の完了までにかかわって長時間を要し、多量のアンモニアの共存の下でも炭素の析出が反応の初期からすぐに認められるのが前の二つと異なっており、発光は初め青褐色にやがて赤褐色ないし黄褐色に輝いてくる。

以下のそれぞれの実測曲線の状況から明らかのように反応ガス成分のいかんによって生成率曲線はいろいろ異なる状況に描かれているが、第 1 図で得られているように [CH₄] の低いものについてはアンモニア素の生成はきわめて短時間に終了し、しかも生成率は 100% に達している。このときの反応管の体積は 800 cc を占め、ガス圧はメタン、窒素、アンモニアの混合ガスとして全圧 150 mmHg を示しているのであって、封鎖系内のガスの静止状態であるかく急速なアンモニア素の生成反応が完了するのは単に高周波電流の負荷と一緒に単極の先端に生ずる直径 2 mm, 長さ 5 mm 内外のトーチ放電部分と直接ガスが接触することによるとは考えられない。

従来から著者らは高波振動放電の下での反応の進行について反応場としてトーチ放電部分を中心として反応管内に拡る反応帯を考慮し、この反応帯の体積は一定周波数をもつ高周波振動エネルギーの吸収体積を表わし、この大きさはガスの種類、圧力等によってそれぞれ定まるものとしてこれを用いて三のガス反応の実測結果について反応経路を説明し、このようなものの存在の可能性を示して来たが、本実験でもこのような反応帯の存在を考慮する必要実測結果を説明する一方法と考えられる。しかしそ従来から放電管内でのアンモニア素の生成過程として

\[
\begin{align*}
\text{CH}_4 + e^- & \rightarrow \text{CH}_2^* + \text{H} \\
\text{NH}_3 + e^- & \rightarrow \text{NH}_2^* + \text{H} \\
\text{N}_2 + e^- & \rightarrow \text{N}_2^* \\
\text{N}_2^* + \text{N} & \rightarrow \text{N}_3 + \text{H} + \text{H} \\
\text{CH} + \text{H} & \rightarrow \text{CH}_2 \\
\text{CH}_3 + \text{H} & \rightarrow \text{CH}_4 \\
\text{H}_2 & \rightarrow \text{H} + \text{H}
\end{align*}
\]

の各反応と考えており、また実験的にこれら反応過程の存在することを確かめてある。

100 M cycle の高周波エネルギーの吸収係数を メタ
図で得られているものは \(\text{[N}_2 \) の増加によると窒素の析出はなく，また第 1 図で曲線 4，5 から算出するように同図の他の任意の反応ガス成分を表す生成速度は，各成分について単独の反応として考慮した際のものの和より低い生成速度を示しているので，放電帯内でのシアノ化水素の生成は (1) の形式によるのでないことがわかる。

(2) の放電によるアンモニアの分解は最終的に窒素と水素になるが，中間生成物として NH 基の存在が化学的にも，また分光的にも認められている。この NH 基は放電帯中にある炭化水素と反応してシアノ化水素を作成することは実験的によく知られているので，窒素の添加によるシアノ化水素の生成量の増加は窒素，アンモニア間の相互作用による \(\text{[NH]} \) の増加によって得られているとも考えられる。アンモニアと窒素の混合物で高周波放電を行うときの各反応段階が成立するとなるとしら。

\[
\text{NH}_3 + e \rightarrow \text{NH} + \text{H}
\]

\[
\text{NH} \quad \text{N} + \text{H}, \quad \text{N}_2 + e \rightarrow \text{N} + \text{N}
\]

したがって

\[
\frac{[\text{NH}]}{[\text{N}][\text{H}]} = K
\]

の関係により \(\text{[N}_2 \) の増加と共に \(\text{[NH]} \) は増し，放電帯内でのメタンとの反応で生成するシアノ化水素の生成量は増すととなる。もしこのような過程をたどるものとすればアンモニアと窒素との混合ガス中での反応は初期において管内の \(\text{[NH]} \) はきわめて高く，シアノ化水素の生成は活発となる，その後だんだん生成速度は低下してほとんど停止の状態となる。また同時に \(v_0 \) は \(\text{[N}_2 \) の増加と共につけに増大すべきである。しかし実験結果は \(\text{[N}_2 \) の増加と共に \(v_0 \) の増加を示すのもあるが，第 5 図に示すように必ずしも増大のみを示すともかきらず，また反応の初期においても反応又は成分のいかんによって第 4，5 図のように \(\text{[NH]} \) が大きいときにも炭素の析出を見せるので，このようなときは \(\text{[N}_2 \) によって \(\text{[NH]} \) の増加があるとは考えられない。これらの事実から窒素による \(\text{[NH]} \) の増大作用があるにせよ，この効果はあまり大きくはないといえない。

(3) 高周波放電帯内の窒素によるエネルギー伝導効果については著者らはアンモニアの分解についてこれを利用した反応の経過を適宜に説明することを示した。このような結果を示す窒素ガスの共存するメタン，窒素，アンモニアの 3 成分の混合ガス中で高周波放電を行えば
ここでシアン化水素の生成によって [CH₄*], [NH₃*], [N₂*], [CH], [NH] の定常状態が乱されないとすれば

\[
\begin{align*}
\text{d}[\text{CH}_4^*]/\text{dt} &= k_1[\text{CH}_4] - k_4[\text{CH}_4^*][\text{CH}_4] \\
&= k_1[\text{CH}_4] - k_4[\text{CH}_4^*][\text{CH}_4], \\
\text{d}[\text{N}_2^*]/\text{dt} &= k_3[\text{N}_2] - k_8[\text{NH}_3][\text{N}_2^*] \\
&= k_3[\text{N}_2] - k_8[\text{NH}_3][\text{N}_2^*], \\
\text{d}[\text{NH}_3^*]/\text{dt} &= k_5[\text{NH}_3] - k_6[\text{NH}_3][\text{N}_2^*] \\
&= k_5[\text{NH}_3] - k_6[\text{NH}_3][\text{N}_2^*], \\
\text{d}[\text{CH}]/\text{dt} &= k_8[\text{CH}_4^*][\text{CH}_4^*] - k_7[\text{CH}]^2 = 0, \\
\text{d}[\text{NH}]/\text{dt} &= k_5[\text{NH}_3^*][\text{NH}_3] - k_6[\text{NH}]^2 = 0.
\end{align*}
\]

したがって

\[
[\text{CH}_4^*] = \frac{1}{k_4} \{k_1 + k_7[\text{N}_2^*]\} \\
[\text{N}_2^*] = \frac{k_3[\text{N}_2]}{k_5[\text{NH}_3] + k_7[\text{CH}_4]} \\
[\text{NH}_3^*] = \frac{1}{k_6} \{k_5/k_6[\text{N}_2^*]\} \\
[\text{CH}] = \left(\frac{k_8}{k_5}[\text{CH}_4^*][\text{CH}_4^*]\right)^{1/2} \\
[\text{NH}] = \left(\frac{k_5}{k_6}[\text{NH}_3][\text{NH}_3^*]\right)^{1/2}
\]

よってシアン化水素の生成初速度 \(v_0 \) は

\[
v_0 = k_{10}[\text{CH}][\text{NH}] = k_{10} \left(\frac{k_1}{k_5+k_7}\right)^{1/2} \left[\left([\text{CH}_4][\text{NH}_3]\right)^{1/2} \times \left([\text{CH}_4^*][\text{NH}_3^*]\right)^{1/2}\right] \times \left(\frac{1}{k_5+k_7} \left\{k_1+k_5A[\text{N}_2]\right\}[k_5+k_6A[\text{N}_2]]\right)
\]

そこで上の事実からメタン-アンモニア系への窒素の混合による生成速度曲線の変動は窒素のエネルギー伝達効果によるものであることがわかる。

以上の事実からメタン-アンモニア系への窒素の混合による生成速度曲線の変動は窒素のエネルギー伝達効果によるものであることがわかります。

（昭和 32 年 4 月 25 日受理）