過テクネチウム酸の陰イオン交換吸着と有機溶媒抽出について

松浦 二郎・小島 益生・井口 昭

テクネチウムは微量化が maar 不何であるが、マクロ量についても水溶液中で 7 値の過テクネチウム酸 (TcO₄⁻) が最もよく知られている。過テクネチウム酸は同じ酸性を有する酸に近似していても、酸化状態は 7 値以外はあまり明確でないが、6 + 6, 5 + 6 と 6 を占める。また 7 値の過酸化酸も水溶液より硫化水素で Tc₂S₇ の組成の硫化物が沈殿し、固体では TcO₇ はも得られているが、TcO₇ に水溶液中では TcO₄⁻ となるが、イオン交換吸着についても、三者の報告は少な

C₁₅H₁₂O₄ としての計算値 C 70.30% H 4.72%
2) 5,7-ジアセトキシソフラボン (Ⅶ)：Ⅶ 230 mg
無水酢酸溶液 pH 0.3 g, 無水酢酸 5 cc を 150 °C の油浴中に 1 時間反応させ、冷却後水に注入し、析出物をエタノールより 2 回再結晶し、mp 163.5 °C の結晶 230 mg を得た。収率 75.9 %。
Ⅶ と融解し、融点降下を示す。

分析値 C 66.81%, H 5.00%
C₁₉H₁₄O₆ としての計算値 C 67.05%, H 4.75%
3) 5,7-ジオキシソフラボン (Ⅷ)：Ⅷ 170 mg, NBS 98 mg (mol 比 1:1.1), 過酸化ベンゾイ
5 mg, 四塩化炭素 10 cc を 90 °C の油浴中で 30 分間反応させる。四塩化炭素を常圧で留去すると未処水分が発生し、無色針状結晶が残る。エタノールより 2 回再結晶し、mp 178 °C の結晶 116 mg を得る。収率 68.1%。

分析値 C 67.27%, H 4.22%

Indian Acad. Sci. 33 A, 116 (1951); Chem. Abst. 46, 500 (1952) において mp 180°C と報告している。

昭和 31 年 4 月、日本化学会第 9 年会、昭和 33 年 4
月、第 11 年会講演

(東京大学教養学部化学教室、東京都目黒区)（昭和 33 年 7 月 30 日受理)

3) J. B. Gerlock, "Peaceful Uses of Atomic Energy,
Proceeding of the International Conference in
7) S. Tribalet, "Rhenium et Technetium" (1957) Gau-
Soc. 77, 3972 (1955).
72, 4805 (1950).
10) E. H. Huffman, R. L. Ostwalt, L. A. Willam, J.
12) M. Haissinsky, "Chimie Nuclaire" (Masson).
13) N. A. Bonner, A. C. Wahl, "Radioactivity Applied to
14) G. Friedlander, J. W. Kennedy, "Nuclear and Radio
1. 試薬
1.i. 99Tc の特性: 99Tc はアメリカ製タカログ番号 99-P (Oak Ridge National Laboratory 製) で核分裂生成物より分離調製されたもので、過テクネチウム酸カリウム水溶液である。99Tc の濃度は 2.3 mC/ml で、半減期より計算すると 50 mg x 2.3/s/ml となる。この原液を水で 100 倍に希釈し、その 0.1 ml を取り、アンモニア水 1 滴を加えて微アルカリ性とし、蒸発乾固し、距離 1 cm でその放射能を測定し、吸収特性を調べた。この放射曲线より見掛上の飛程は 63 mg Al/cm2 (0.27 MeV) が得られ、実際の 0.29 MeV とほとんど一致し、他に影響ある放射物は含まれていないものと考える。放射能測定法は 2.ii に示す方法で行った。吸収特性曲線を第 1 図に示す。

1.ii. その他の試薬
希塩酸、硝酸、アンモニア水：蒸留
濃塩酸、過塩素酸、硫酸：特級
イソアミルアルコール：1 級
陽イオン交換樹脂 Amberlite IR-120
陰イオン交換樹脂 Dowex 1-X8

2. 放射能測定用試料の調製および測定法
2.i. 測定用試料の調製: 99Tc を含む溶液 1 ml をガラス製試料を採取、アンモニア水でアルカリ性とし、蒸発乾固する。テクネチウム塩の揮発性については、塩化物、酸化物は加熱により揮発することが知られており、われわれの定性的予備実験の結果では、テクネチウムを含む溶液が、硝酸塩、塩酸塩、水溶液であるときは、この順に後者になるほど揮発の割合は大きくなり、水溶液ほどと同様に揮発、硝酸では 1/3 前後の大ささで揮発する。これに対し、アンモニア水で微アルカリ性とした溶液を蒸発したときはテクネチウムの揮発を防ぐことができる。

2.ii. 放射能測定法: 2.i で調製した試料を距離 1 cm で、理研 GM-131 (2.7 mg/cm² マイカ) の GM 用チューブを用い、自作の理研型 GM 計数器 (64 選法) で測定した。

3. イオン交換吸着の測定法
3.i. 陽イオン交換樹脂に対する行動: Amberlite IR-120, 80〜120 mesh, H−R 形、および Na−R 形についてバッチ法によりその吸着性を調べた。0.1〜0.01N 塩酸溶液中のテクネチウムはほとんど交換吸着されず、さらにテクネチウムを含む塩酸溶液 10 ml に飽和塩酸ヒドロキシアルミン溶液 1 ml を加え、同じくバッチ法で吸着性を調べたが、ともに交換吸着性に変化は認められなかった。

3.ii. 強塩基性陰イオン交換樹脂に対する分布係数 K_d の測定: Dowex 1−X8, 50 mesh のものを用い、バッチ法により K_d を測定した。液相の量は 10 ml、樹脂量は 0.1 g、テクネチウムの濃度は 2.5 x 10$^{-5}$ mol/l で恒温ふるいを水槽の中で、温度 25℃ で 3 時間ふります、平衡に達せめる。樹脂の液相が塩酸のときは R−Cl 形、硫酸のときは R−SO₄ 形、硝酸のときは R−
NO₃⁻ 形、過塩素酸のときは R-ClO₄⁻ 形のものを用いる。
液相の濃度はそれぞれにつき 0.1, 0.3, 0.5, 1, 2N で
の溶液について行った。ときに塩酸の場合は 0.01, 0.001
N についても実験した。それぞれの放射能の測定は 2.2
の方法によった。結果は第 2 図に示す。log-log プロッ
トで表わしており、濃度は活動濃度で示してある。活
量係数は塩酸、硫酸は Harried, Ehlers(15)、その他は
Landolt-Börnstein(16) の値を用いた。

第 3 図 RCl-HX の間のイオン交換平衡曲線

4. 吸収スペクトルの測定

テクネチウム酸カリウム（KTcO₄）溶液を塩酸酸性、
または過塩素酸性にしたときにおける吸収スペクトルを
Beckman EPU-2 型分光光度計（日立製作所製品）に
より 1 cm のセルを用い測定した。0.01 mol/l KTcO₄
水溶液 0.15 ml に水 5 ml を加え、対比液を水とり、
吸収スペクトルを測定したが、波長 600〜210 μm の
間では吸収はほとんど認められなかった。波長 220 μm か
ら 240 μm の間では 2〜3 μm の間隔で吸収を測定し
た。ついで 0.15 ml の 0.01 mol/l KTcO₄ 溶液に 5
ml の 6N 塩酸、または 6N 硫酸を加え、対比液には
等濃度の塩酸または硫酸を用いて吸収を測定した結果を
第 4 図の曲線 1 で示す。ついで両液を沸浴中で 1.5 時
間、および 3 時間加熱したもののに吸収スペクトルを測定
した。硫酸溶液の場合は曲線 2 で示すように、加熱前の
もののは収スペクトルともほとんど同じであるが、塩酸溶
液の場合は曲線 3、4 で示すように、時間とともに吸収
スペクトルは変化する。

5. イソシアミルアルコールによる溶媒抽出法

過塩素酸酸性、硝酸酸性、塩酸酸性からイソシアミル
アルコールで抽出を行い、分配率を求め、第 5 図に示した。
測定方法は M 溶定の塩酸または硝酸、過塩素酸（そ
れぞれイソシアミルアルコールを飽和しておく）5 ml に
0.01 mol/l KTcO₄ 0.2 ml を加え、M 溶定の塩酸または
硝酸、過塩素酸を飽和したイソシアミルアルコール 1 ml
を加えて、30秒よくふりまぜてイソシアミルアルコールの層を
分離し、試料ザラにとり、アンモニア水を加えて中和し、

16) Landolt-Börnstein, "Physikalische-Chemische Tabellen. Eg III" (1955) Springer.
第4図 硫酸、塩酸溶液中のTcの吸収スペクトル

第5図 種々の酸溶液中のイソアミルアルコールによる抽出曲線

第6図 2N塩酸酸性溶液中のTcのイソアミルアルコールによる抽出曲線

6. イソアミルアルコールに対する酸の溶解度の測定
2mlのイソアミルアルコールと2mlのM規定の硫酸または過塩素酸を加えてよくふりまぜ、室温に放置する。イソアミルアルコールの相と水相の容積変化を測定する。

一方水相の一部をとり、水酸化ナトリウム標準溶液で滴定し、イソアミルアルコール中に溶解した酸の量を求め、結果を第7図に示す。

第7図 種々の酸-イソアミルアルコールの2相間の分配の関係

II. 結果と考察
1. 陰イオン交換樹脂に対する吸着について

第2図の結果から硝酸、過塩素酸水溶液からのTc(VI)
のイオン交換吸着は、その \(K_d \) 曲線の酸濃度に対する\(\log \log \)プロットから明らかに1値・1値の陰イオン交換吸着の理想系であることを示している。これに反し、塩酸および硫酸溶液中からの 吸着は \(K_d \) の値も、\(K_d \) 曲線の傾斜も非常に異なっているといえる。前者の場合は過テクネチウム酸と同属の過塩素酸との類似性から考えられるように、

\[
R\text{-ClO}_4^- + TeO_4^{2-} = R\cdot TeO_4^- + ClO_4^-
\]

のような理想系に近い。後者の塩酸、硫酸溶液中よりのイオン交換吸着はこのような簡単なイオン吸着とはいいえない。よって上述の2つの形の吸着の相違を明らかにするためには、まず熱力学的イオン交換吸着平衡定数 \(K_d \)を求めればよい。それは任意の溶液からの理想系陰イオン交換吸着におけるテクネチウムの分布係数 \(K_d \)を \(K_d \)から計算できるからである。 \(K_d \)が熱力学的平衡定数であるとすれば

\[
K_d^{\text{Fe}} = K_d^{\text{Te}} \times K_d^{\text{Y}}
\]

である。

これを用いて

\[
K_d^{\text{Fe}} = K_d^{\text{Te}} + K_d^{\text{Y}} + K_d^{\text{Y}}
\]

Grinckshankらがにより、化学量論的イオン交換平衡 \(K_d \)から熱力学的 \(K_d \)を求めることができる。これら方法にしたがって第3図から求める。実験により、

\[
K_d^{\text{Fe}} = K_d^{\text{Te}} + K_d^{\text{Y}} + K_d^{\text{Y}}
\]

の陰イオン交換吸着を示す、 \(K_d^{\text{ClO}_4^-}, K_d^{\text{ClO}_4^-} \) を求める。第3図は樹脂中の RCl 形樹脂の Cl⁻のmol 分率 \(N_{Cl} \)に対して \(\log K_d^{\text{ClO}_4^-}, \log K_d^{\text{ClO}_4^-} \)をプロットしたものである。（1）式の

\[
K_d^{\text{Fe}} = \frac{\left[X^- \right]^S}{[RX]^R \cdot f_X^R}
\]

および

\[
K_d^{\text{Te}} = \frac{\left[Y^- \right]^S}{[RY]^R \cdot f_Y^R}
\]

において

\[
\frac{\left[X^- \right]^S}{[RX]^R \cdot f_X^R} = \frac{\left[Y^- \right]^S}{[RY]^R \cdot f_Y^R}
\]

なるから

\[
K_d^{\text{Fe}} = K_d^{\text{Te}} \times K_d^{\text{Y}} \cdot K_d^{\text{Y}}
\]

式より（2）式が得られる。

(a)

\[
\text{R-Cl} + HTeO_4^- = R\cdot TeO_4^- \text{Cl} (a)
\]

または

\[
(R\cdot Cl + H^+) + TeO_4^- = R\cdot TeO_4^- (OH) \text{Cl} \]

(b)

または

\[
\text{RCI} + TeO_4^- (OH) \text{Cl}^- = RTeO_4^- (OH) \text{Cl}^- \text{Cl} (c)
\]

(a)は分子吸着、(b)は水酸化基イオン形成吸着、(c)は塩基イオン形成吸着であるが、 \(K_d \)曲線は全く同じで同じ反応を示すことができない。

2. イソアルミルアルコールと酸水溶液の2相間におけるテクネチウムの分配について

Nernst-Berthelot の分配則にしたがって第5図にイソアルミルアルコールと各種酸水溶液2相間のテクネチウムの分配係数 \(D \)を示した。われわれの結果と比較のためGerlite3)の結果を点線で示したが、塩酸濃度の関数として示した分配係数は原則的に一致している。第2図と第5図と比較すると、テクネチウムの交換樹脂に対する分布、有機溶媒による分配に対する酸の種類の影響が同一順序になっていることがわかる。第6図は塩酸2N溶液におけるテクネチウムの濃度と分配係数 \(D \)との関係を示したものであり、塩酸2N付近においてはテクネチウム酸の多重酸としての化学種は存在しないといえる。また酸性溶液中において過テクネチウム酸が、酸基リガンドと陰イオン形成をする傾向については、吸収スペクトルの第4図からわかるように否定的である。
しかし溶液中で数時間加熱を行うと 6N 塩酸溶液では
235 m_μ あたり著しくない極大が現われる。このスペックに塩素イオンの酸化により生成する、CI_2 の吸収
が現われないから、おそらくテクネチウム (VI) の塩素
錯イオン（たとえば TcO_5 (OH)Cl）を形成する傾向が
あるといえる。しかし過レニュウムの場合と同様室温で
は 6N 以下の塩酸、または硫酸の酸性溶液中ではテク
ネチウム (VI) は塩イオンを形成しないか、少なくとも
イオン形成の反応はきわめて遅いものといえる。第 1 表
にアルカリ性の TcO_4^- 溶液を酸性にしてただちに抽出
したとき、あらかじめ 6N 塩酸で 12 時間溶液中で加
熱したのち抽出したときの分配係数を示した。

第 1 表

<table>
<thead>
<tr>
<th>抽出に用いた HCl 溶液濃度</th>
<th>1N</th>
<th>2N</th>
<th>3N</th>
</tr>
</thead>
<tbody>
<tr>
<td>アルカリ性溶液の TcO_4^- 試料溶液</td>
<td>3.6</td>
<td>6.1</td>
<td>1.1</td>
</tr>
<tr>
<td>6N HCl 溶液で熟した TcO_4^-</td>
<td>2.5</td>
<td>3.6</td>
<td>2.2</td>
</tr>
</tbody>
</table>

この実験で前者は抽出が過テクネチウム酸 (HTcO_4)
によるもので、後者はクロル過テクネチウム酸 (たとえ
ば HTcO_5 (OH)Cl) の抽出と、HTcO_4 の抽出の和によ
るものと考えられる。したがって、2N 以下の塩酸の酸
溶液では HTcO_4 がよく抽出され、3N 以上ではクロル
過テクネチウム酸の抽出が考慮される。

またヒドロキシルアミン存在下で抽出を行っても、第
5 図に示した抽出率といわずなる相違はみられず、7
価より低い原子価への還元は 6N 以下の酸溶液では事実
上起こらないか十分においしいといえる。分配係数 D_{Tc}
を酸濃度の関数として表わすため、つきの考察を行った。
第 5 図の分配係数 D_{Tc} の酸の濃度の増加にともなう増
大は、酸の濃度に比例し、酸の低濃度のときは Irving
の式を用いて示せば

$$\frac{\partial \log D_{Tc}}{\partial \log C_{HX}} \cong 1 + 18$$

である。

したがってアルコール溶液に抽出されるのは分子形の
過テクネチウム酸 (HTcO_4) で、水溶液中ではイオン形
(TcO_4^-) と酸形 HTcO_4 とが共存すると考えられる。

$$D_{Tc} = \frac{[HTcO_4]^{aq}}{[Tc]^{aq}} = \frac{D^0_{HTcO_4} \beta_{HTcO_4} [H^+]^{aq}}{1 + \beta_{HTcO_4} [H^+]^{aq}}$$

ただし

$$D^0_{HTcO_4} = \frac{[HTcO_4]^{aq}}{[HTcO_4]^{aq}}$$

$$\beta_{HTcO_4}$$ は HTcO_4 の酸生成定数とすると

$$\beta_{HTcO_4} = \frac{[HTcO_4]^{aq}}{[H^+]^{aq} [TcO_4^-]^{aq}}$$

ところが分配係数 D_{Tc} は 2N 以上の酸 (硫酸は除く)
溶液から抽出するときは極大を通じて減少する。また極
大の大きさはイオン交換樹脂の K_d の大きさの順序と一
致している。これに対する説明はつきのよう考察され
る。アルコールは塩基性溶媒であってテクネチウムが酸
溶液から抽出する過程を

$$\text{(ROH}_2^+ \cdot X^-)^{aq} + \text{HTcO}_4^- \leftrightarrow \text{(ROH}_2^+ \cdot \text{TcO}_4^-)^{aq} + X^-$$

の反応に帰すことができる。ところが (ROH}_2^+ \cdot X^-)
は無水アルコール中では安定であるが、少量の水が存在
すると

$$\text{(ROH}_2^+ \cdot X^-)^{aq} + (H_2O)^{aq}$$

のように分解することが電気伝導度の実験などから知ら
れる。抽出の際酸の濃度を増すと (7) 式により、
(H_2O^+ \cdot X^-)^{aq} は増し、(7) 式によつて (ROH}_2^+ \cdot X^-)^{aq} は減少する。しかし第 8 図に示したようにアルコ
ール相中での水の增加によって、アルコール相の体積
が増大し、ついに (H_2O^+ \cdot X^-)^{aq}/(H_2O)^{aq} は第 9 図
に示すようにほぼ一定となる。

(6) 式により過テクネチウム酸の抽出は (ROH}_2^+ \cdot X^-)^{aq}
に依存するから、(ROH}_2^+ \cdot X^-)^{aq} が一定に達
したのも酸を増させて (6) 式は左下→上の方に変化し、分配
係数が減少するものと考えられる。この分配係数の減少

(85) 松浦・小島・井口：過テクネチウム酸の陰イオン交換吸着と有機溶媒抽出について 1545

第 8 図 有機溶媒中の水と体積変化の関係

- [3] \([X]^{aq}\)：有機溶液中の物質 X の濃度 (以下同様)
- [4] \([X]^{aq}\)：水溶液中の物質 X の濃度 (以下同様)
- [5] \([Tc]^{aq}\)：水溶液中の全 Tc の量。
を定量的に扱うには (6) 式と (7) 式の平衡から考えればよい。

(6) 式の平衡定数
$$K_1 = \frac{[\text{H}_2\text{O}^+ \cdot \text{TcO}_4^-]_{\text{org}}}{[\text{TcO}_4^-]_{\text{aq}} \cdot [\text{X}^-]_{\text{aq}}}$$

(7) 式の平衡定数
$$K_2 = \frac{[\text{ROH}_2^+ \cdot \text{X}^-]_{\text{org}}}{[\text{ROH}]_{\text{org}} \cdot [\text{H}_2\text{O}^+ \cdot \text{X}^-]_{\text{org}}}$$

(4) 式の $D_{\text{H}_2\text{O}}$ は
$$D_{\text{H}_2\text{O}}^0 = \frac{1}{C_{\text{HX}}}$$

であるから、(9) 式を用い $[\text{ROH}_2^+ \cdot \text{X}^-]_{\text{org}}$ を消去すれば (3) 式は

$$D_{\text{M}^2} = K_1 K_2 \frac{[\text{ROH}]_{\text{org}}}{[\text{H}_2\text{O}]_{\text{org}}} \cdot \frac{1}{C_{\text{HX}}^2}$$

C_{HX} は水相中の酸濃度で $C_{\text{HX}}=[\text{H}_2\text{O}^+] = [\text{X}^-]$、また $[\text{ROH}]_{\text{org}}$ はアルコール相中のアルコール濃度であるから一定とみなせる。また $[\text{H}_2\text{O}^+ \cdot \text{X}^-]_{\text{org}}/[\text{H}_2\text{O}]_{\text{org}}$ は第 7 図に示した可の分配係数と水相中の酸濃度の関係でアルコール相中の体積変化の酸濃度を決定する影響(第 8 図に示したアルコール相の体積変化によるアルコール相中の含水量 (mol 濃度) 変化)から求められる。$[\text{H}_2\text{O}^+ \cdot \text{X}^-]_{\text{org}}/[\text{H}_2\text{O}]_{\text{org}}$ は第 9 に示した水相中の酸濃度 C_{HX} の関数として表わすと、第 10 図のプロットにみるように

$$\frac{[\text{H}_2\text{O}^+ \cdot \text{X}^-]_{\text{org}}}{[\text{H}_2\text{O}]_{\text{org}}} = \frac{C_{\text{HX}}^2}{k + 2.5 C_{\text{HX}}}$$

で表される。

第 10 図 水相の酸の濃度と、有機溶媒中の水と酸との mol 比の関係

2.5 は酸 HX^- の水和数の最小値で k の値は $\text{HCl}: 23.8, \text{HClO}_4: 2.8, \text{H}_2\text{SO}_4: 220$ となる。したがって定数の部分を D_{M^2} で表わすと (10) 式は

$$D_{\text{M}^2} = \frac{1}{1 + (2.5/k) C_{\text{HX}}}$$

となる。

$$D_{\text{M}^2} = C_{\text{HX}}$$ が小さいとき D_{M^2} となる。したがって (3) 式を書き替えて

$$D_{\text{M}^2} = \frac{\beta C_{\text{HX}}}{1 + \beta C_{\text{HX}}} \cdot \frac{1}{(1 + 2.5/k C_{\text{HX}}^2)}$$

(12) 式は第 7 図の抽出比の分配係数が共存する酸によって変化する様子を説明できるばかりでなく、$[\text{ROH}_2^+ \cdot \text{X}^-]_{\text{org}}$ が一定濃度になったときは (6) 式の過程はイオン交換樹脂における交換吸着と同じになる。

また (11) 式の関係式を D_{M^2} を過テクチニウム酸の活発濃度で表わした熱力学的な分配係数とすれば、D_{M^2} は反論的濃度で表わした分配係数である。したがって、各酸における酸の過テクチニウム酸の活発度をそれぞれ γ^0, γ^e とすれば $\gamma^0 / \gamma^e = 1 / (1 + (2.5/k) C_{\text{HX}})$ である。これは Debye-Hückel の活発度に関する式を

Brigogine が 1 mol/l までの溶液に拡張した

$$-\log \gamma = \frac{0.5 C}{1 + \beta C} + 0.190 C$$

にさらに強酸の活発度のように極小をつくる濃度より大きい濃度に適用するために、$- (2.5/k) C^2$ とくけ

C^2 の係数を既知の活発度とあわせると、塩酸に対して 0.13、硫酸では 0.015 であって、k はそれぞれ 23, 170 となり、前記の $k: 23.8 (\text{HCl}), 220 (\text{H}_2\text{SO}_4)$ と一致している。

第 9 図 水相の酸の濃度と、有機溶媒中の水と酸との mol 比

△: H_2SO_4, ○: HCl, ×: HClO_4
加え、γ^0 に対しては C としてアルコール相中の酸の濃度 C_{HX}^0 をとると、$C_{\text{HX}}^0/C_{\text{H}X} = D_{\text{HX}} < 1$ という条件をいえると C_{HX}^0 の大きいところで

$$\log \frac{\gamma_{\text{H}X}^0}{\gamma_{\text{H}X}^s} = -\frac{2.5}{k} C_{\text{HX}}^0$$

となる。すなわち

$$\frac{\gamma_{\text{H}X}^s}{\gamma^0} = \exp\left(-\frac{2.5}{k} C_{\text{HX}}^0\right) \approx \left(1 + \left(\frac{2.5}{k}\right)^{-1}\right)^{-1}$$

なることを知ることができる。（11）式で C_{HX} を C と略記し ($D/\partial C) = 0$ より D_{max} となる C_{max} をもとめ*7、各酸の実測値より $\beta_{\text{H}X} D_{\text{H}X}$ を計算した値を第 2 表に示す。

以上考察の結果第5図に示した硫酸、塩酸、過塩素酸、硝酸溶液からのエソアミール酵素によるテクネチウムの抽出における分配率 $D_{\text{H}X}$ の酸濃度に対する変化は（12）式により完全に説明される。塩酸溶液で 2N 以上の濃度で抽出率の減少することを Gerlit*9 は過テクネチウム酸の塩堿イオンによる還元に帰しているが、われわれの実験結果によれば

1）硝酸、過塩素酸のようにテクネチウム（Ⅴ）で酸化されにくい酸においても抽出率の減少がおこる。

2）6N 以下の塩酸ではテクネチウム（Ⅳ）の還元は事実上起こらないが、きわめて反応がおそく抽出には影響

*7 3次方程式をとことくなく $\beta_{\text{H}X} D_{\text{H}X}$ の限界値について計算。

3）吸収スペクトルにテクネチウム（Ⅴ）、（Ⅳ）の吸収がない。

4）還元剤（ヒドロキシルアミン）の添加により抽出率はあまり変わらない（還元反応が少なくともきためておそいといえる）。

5）抽出率の減少は過テクネチウム酸の分配率($D_{\text{H}X}$) に対して酸が水分子を配位する数 ([H$_2$O]$^{2-}$/[H$_3$O$^+$ · X$^-$]) を酸濃度の 2 乗に比例して減少させることにより説明できる。以上のような理由により還元は否認される。

また過テクネチウム酸の塩堿イオン形成は塩素塩イオン（たとえば TeO$_3$(OH)Cl$^-$）の可能性があるけれども、その反応はおそらく、濃度も 6N 以上にしなければ事実上認め得ない。しかし陰イオン交換樹脂相のようなイオン活動度の大きい相の内部ではよくイオン形成が行われ、イオン交換着吸より、分子吸着のような吸着が行われる可能性がある。

終りにこのぞみ終始有益な御助言と御討論をたまわた東京大学教養学部化学教室白井俊明博士、および吉野論吉博士に厚く御礼申し上げます。

（昭和 32 年 10 月，日本分析化学会第 6 年会（一部）講演）

（東北大学理学部化学教室，仙台市）（昭和 33 年 7 月 30 日受理）

トロポン類の紫外部吸収スペクトルについて

向 井 利 夫

トロポンおよび C$_2$ 位にメチル、エチル、フェニル、β-メトキシフェニル、β-トリル、ベンジルおよび α-、β-ナフチル基を有するトロポン類の紫外部吸収スペクトルを検討した。アルキル基の置換による影響もみられるが、アリル基の置換によっては、立体障害のない場合は吸収は長波長に移動し、かつ新しい吸収帯が 270 mμ 付近に現われるものを確かめた。またトロポン核の C$_3$, C$_7$