花コウ岩成分鉱物に関する地球化学的研究 (その1)

茨城県筑波山付近の花コウ岩の雲母の化学組成について
(昭和33年9月16日受理)

下田信男

花コウ岩（主としてペガマタイトの存在する近傍）の成分鉱物元素の分配に関する研究はきわめて少ない。

当地方の花コウ岩類は野外観察3)から筑波形、稲田形および上貫形と命名されている。これらはいずれも通常の岩盤分類形式を示しているが、ケイ酸量の増加に伴い、マグネシウム、鉄が減少し、カリウムが増加する。この3形のうち、筑波形花コウ岩と稲田形花コウ岩はケイ酸に対する他の化学成分の変化が同一曲線上に乗り、塩の時を表すと考えられる雲母の MgO/FeO の値と共存酸鉱鉱石の An%、黒雲母の組成率と斜長石の An% の関係が筑波形花コウ岩の黒雲母から稲田形の黒雲母へ連続的に変化している4)。これらの関係から、筑波形と稲田形は同一岩盤から時間を異にして産出したものであり、岩相形は後期のものと推定されている5)。今回は筑波形花コウ岩中の黒雲母、複雲母花コウ岩（筑波形）中の黒雲母と白雲母、山ノ尾ペガマタイト黒質緑泥に共存する黒雲母と白雲母等の試料を対象として元素の分配を研究した。

1. 塩の発生を異にする花コウ岩中の黒雲母では、カルシウム、マグネシウム、カリウム含有量に明瞭な差がみられる。後期ごむのもののは初期ごむのものにくらべ、カルシウムに富み、カリウム、マグネシウムに乏しい。

2. 複雲母花コウ岩中の黒雲母と白雲母の間には、カリウムが Al₂O₃/Fe₂O₃ 含有量の多い白雲母に、パナジウムがチタン含有量の多い黒雲母に濃縮する。

3. 黒雲母花コウ岩中の黒雲母と白雲母では鉱は白雲母に含まれるが、ペガマタイト黒質緑泥に共存する黒雲母と白雲母では黒雲母に含まれる。

結言

ペガマタイト鉱物に関する地球化学的研究3)4)6)では、ペガマタイト鉱物間の元素の分配則を報告したが、本研究では、花コウ岩成分鉱物について元素の分配状態を研究し、ペガマタイト鉱物間の元素の分配状態と比較して、花コウ岩からペガマタイトを生成するさいの機構を推定することを目的とする。

分析試料

茨城県筑波山付近の花コウ岩中、筑波形、筑波形3)の各3個ずつ6 個からなる黒雲母および同地方の複雲母花コウ岩（筑波形）中に共存する黒雲母と白雲母それぞれ一試料を分析試料とした。稲田形花コウ岩から分離したと考えられている山ノ尾ペガマタイトの黒質緑泥に共存する黑雲母と白雲母の化学組成はすでに報告した。

分析方法

岩成分は一般の用いフッ素酸化分析法8)9)により、微量成分は回転・セクターを用いる分光分析法10)11)によった。

15) 花コウ岩成分鉱物に関する地球化学的研究 (その1)
14) 花コウ岩成分鉱物に関する地球化学的研究 (その1)
4 分析結果

主成分の分析結果を表1に、微量元素の分析結果を表2に示す。

表1A 硬質岩類の化学組成

<table>
<thead>
<tr>
<th>硬質岩類</th>
<th>硬質岩類</th>
<th>硬質岩類</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬質岩類</td>
<td>硬質岩類</td>
<td>硬質岩類</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>タン</th>
<th>タン</th>
<th>タン</th>
</tr>
</thead>
<tbody>
<tr>
<td>タン</td>
<td>タン</td>
<td>タン</td>
</tr>
</tbody>
</table>

注a) 1894年3月10日、Kashima。

表1B 硬質岩類の化学組成

<table>
<thead>
<tr>
<th>硬質岩類</th>
<th>硬質岩類</th>
<th>硬質岩類</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬質岩類</td>
<td>硬質岩類</td>
<td>硬質岩類</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>タン</th>
<th>タン</th>
<th>タン</th>
</tr>
</thead>
<tbody>
<tr>
<td>タン</td>
<td>タン</td>
<td>タン</td>
</tr>
</tbody>
</table>

5 結果に対する考察

5.1 硬質岩類の化学組成

ベガマタイトの鉱物に関する地球化学的研究において、硬質岩類の一部に含まれる鉱物の化学組成と田中田村に関する研究が行われている。特にベガマタイトの鉱物を構成する鉱物の化学組成は、隠蔽層の成因と鉱物の相関を明らかにし、田中田村の鉱物の化学組成を明らかにするために重要である。

表2 鉱類、ガリウム、パンツミウムの含有量

<table>
<thead>
<tr>
<th>試料</th>
<th>黒雲母</th>
<th>複数麻母</th>
<th>白雲母</th>
<th>複数麻母</th>
</tr>
</thead>
<tbody>
<tr>
<td>複数麻母</td>
<td>黒雲母</td>
<td>0</td>
<td>350</td>
<td>0</td>
</tr>
<tr>
<td>複数麻母</td>
<td>複数麻母</td>
<td>45</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>複数麻母</td>
<td>白雲母</td>
<td>110</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>複数麻母</td>
<td>白雲母</td>
<td>25</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>複数麻母</td>
<td>鈦引</td>
<td>17</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>複数麻母</td>
<td>鈦引</td>
<td>24</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>複数麻母</td>
<td>鈦引</td>
<td>10</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

注a) 1894年3月10日、Kashima。
多くの含まれるものに分けて化学成分を列記するとAは鉄（I、II）、マグネシウム、マンガン、カルシウム、チタン、バリウムム等。Bはケイ素、アルミニウム、カリウム、ナトリウム等、ガリウム、Cは特異である。

微量成分、バリウム、カリウム、鉛の挙動について述べる。バリウム等はチタンおよび鉄（I）含有量の大きい白雲母に多く含まれる。このことはペグマサイト脈中の白雲母や、ペグマサイト晶物の花崗岩の白雲母ともに見られる。

カリウムは複雑花崗岩鉱物では（Al₂O₃+Fe₂O₃）含有量の大い白雲母に多く含まれている。白雲母間ではペグマサイト中的白雲母に比較しそれほど含まれていない。

鉛の挙動は興味深い。何故鉛がペグマサイト中の白雲母にいもなく漂出しており、複雑花崗岩鉱物の白雲母では検出できなかったが、今後他地方の複雑花崗岩鉱物をあらためて研究したい。

終に本研究を行うにあたり御指導を賜わた東京教育大学門口博士、秋葉医賢教授に心から感謝の意を表する。分析については東京教育大学黒田六郎学士の御協力を感謝する。

（昭和31年11月、学協会秋季期研究発表大会講演）

アルカリを被覆した金属表面の電位分布に関する化学的考察

（昭和33年4月26日 受理）

山本 大生† 甲斐 文朗†

銀、白金のような貴金属の表面に水素化カリウム溶液を塗布し、空気中で加熱したものに負圧を印加、このトリウムエマチオニン中に入れ、後にお塗布フラッシュを行なって、それらの金属表面の電位における位相を示した。

このような処理を行なった金属表面には、しばしば白金の塩酸塩生成物が点々と不均一に析出しており、この種の処理により金属表面には常温の状態においてすでにいちじらしい電位の変曲が生じていることがわかった。

1 論 言

Westermack、Erwollは金属表面の電位分布をトリウムエマチオニンを用いたオートラジオグラフィーにより研究した結果を通した。すなわちかれらは、陰極の鉛の基に他の金属、すなわち鉄、白金等をあたかも象がんのようにして込み、その表面を研磨したのちに、電圧を印加してトリウム中に入れ、その後の金属表面のオートラジオグラフィーを行なった結果。鉛の基のにはめ込んだ鉛、白金などの部分にトリウムの塩酸塩生成物が有機的に析出しており、そのオートラジオグラムの顕著な幅読様模様にわたって金属表面の電位分布が見られることを示した。著者らは金属表面にいわゆる“Emitter”を塗布して加熱処理したもののは電位分布を両の方法で測定することを試みた結果、若干の興味ある成果を得た。ここではEmitterとは実用的な観点からは異常な電極が使用されるなどの電極は正常な電極に比して電解法がいちろしく増大することが認められている。

すなわち、アルカリ土金属の塩酸塩をニッケルあるいは、ニッケル合金などの表面に塗り、真空加熱処理により金属表面にそれらの酸化物の薄層をつくり、電極として用いると熱電圧がいちろしく増大することが認められている。

これは物理化学的にもきわめて興味ある現象であり、基盤金属の影響なども考慮すると理論的には理解と問題となり、その機作が明らかでない。

† 須賀大学文学部化学教室、須賀市立製造
†† 現在、須賀大学医学部
2) 千葉実, "真空法" p. 18 (1950) 発行。