秋田県玉川温泉の銅、亜鉛含有量について

（昭和34年2月18日受理）

一 国 雅 □

秋田県玉川温泉に見いだされる2種の酸性泉、すなわち主要陰イオンとして塩素イオンと硫酸イオンを含む型と塩酸イオンのみしか含まない型について、銅、亜鉛の定量を行なった。前者には2.65〜3.35 mg/l の亜鉛を、5〜8 mg/l の銅が含まれ、また塩素イオンと亜鉛との間に高い相関が見られた。後者は10〜20 mg/l の亜鉛を含む程多く、前者に見られた特異な相関は見いだされなかった。

1 緒 言

玉川温泉に関する最近の研究は主としてその微量成分、ガス成分17、18、温泉水の根性6、さらにこの温泉と他に近いの温泉の比較19を扱っている。このように従来は単にそれぞれの成分の定量に留めていた温泉の研究が、これら他の成分、環境因子を関係づけることによって温泉の溶出機構を推定する段階まで進んでいる。ただこの推論は、さらに確かめを要するものであるためには、なお多くの観点からの検討が必要とすることはいうまでもない。その意味でこの温泉の近所に生成して直接関係している銅についての知識が得られたのを機会に同じくこの温泉中検出されている銅、亜鉛についての調査が必要であろう。

2 目 的

玉川温泉の本流を形成する数個の源泉全部についての銅、亜鉛の定量は現在までになされておらず、またこれら主成分と関係づけて考察した例もない。銅についてすでに川谷らが著、塩素イオン、硫酸イオン、酸度との関係について考察しているが、同氏の結果は銅、亜鉛についても当てはまるものか試みることも意義のあることであること、このことからこれらの元素の溶出機構が考えられるし、また他方温泉水の根性について何らかの手掛りを求める可能性も生じて来る。以下に述べる銅、亜鉛の分析はこれらの考えにもとづいてなされたものである。

3 方法

3.1 銅の定量

試料50mlを蒸留水で100 mlに希釈し、精製したジチゾンの四塩化炭素溶液を少量ずつ加えてゆっくり、銅の抽出をくり返す。抽出した四塩化炭素層を集め、全量を20 mlとし、530 mpと610 mgの2枚のフィルターを使用して吸光度を測定し、標準液で作製した計算式によって銅の濃度を求める。このようにして得たジチゾンの存在下で銅の定量を行なうことができる。同じ試料について定量を反覆し、土2%の誤差で銅が定量されることが判った。

3.2 亜鉛の定量

試料5 mlをとり、これにあらかじめジチゾンで処理して亜鉛を除した2 mlのクエン酸アンモニア10%溶液と2 mlの結晶チオ硫酸ナトリウム25%溶液を加え、再蒸留したアンモニア水で溶液を弱アルカリ性とする。この条件は予備実験によって共存する銅、鉛をマスクするのに十分であることを確かめた。銅の場合と同じように亜鉛の抽出をくり返す、亜鉛のジチゾン層を含む四塩化炭素層を20 mlに希釈する。定量は銅の場合に使用したものの同じフィルターを用いて行ない、計算法をまたそれに準じて行なう。亜鉛の濃度が2〜3 mg/lであるとき、定量の誤差は±5%であった。

3.3 方法の検討

試料はすべてボリエチレンビンに採取してこれを実験室に持ち帰って検査を行なった。この間にビンの底に沈殿が認められるようになったので、これにともなってこれらの重金属は沈殿するから新しく述べた方法は意味がなくなってしまう。この点を調べるため沈殿を別出し、110℃で乾燥し、同量の塩酸素と混合し、分光分析によってこの中に含まれている重金属の検出を行なった。

分解条件は試料を分光分析用試験電気中あけた直径2 mm、長さ3 mmの細さの穴に詰め、直流110V、電流5〜15Aで焼出し、島津製QM-60型分光分析器を用いてそのスペクトルをとった。

検出された元素についてはHarvey22の結果を用いて半定量を行ない、亜鉛中の量を推定した。ただ同氏の条件とここで用いた条件はまったく同じではないから、この値は若干の幅を持って解釈しないといけない。

表1はこのようなにして得られた半定量の結果を検証中の各成分の重量を以って示したものである。なお亜鉛は検出されなかった。

1) 長崎駒田化学研究所化学教室、東京農芸大学
2) 石井、総報、民化、昭50, 338 (1957); 51, 880 (1958).
3) 名古、環境化学、昭54, 35 (昭53).
4) 小永遠、日化協会研究発表会、昭45, 144.
5) 東京、民化、昭51, 535 (昭56).
6) 高、総報、総報、昭51, 535 (昭55).

注記①"了."は実際の測定値を示す。

表 1. 沈殿物の半定量分光分析

<table>
<thead>
<tr>
<th>検出元素</th>
<th>Ⅰの温泉水から生じた沈殿物中の重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>As</td>
<td>0.01~0.1</td>
</tr>
<tr>
<td>Ba</td>
<td>>1</td>
</tr>
<tr>
<td>Ca</td>
<td>0.001~0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>0.001~0.001</td>
</tr>
<tr>
<td>Pb</td>
<td>0.01~0.1</td>
</tr>
<tr>
<td>Mg</td>
<td>0.01~0.1</td>
</tr>
<tr>
<td>Si</td>
<td>>1</td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
</tr>
</tbody>
</table>

表 2. 玉川3原の分析結果

<table>
<thead>
<tr>
<th>源泉名</th>
<th>水温 (℃)</th>
<th>pH</th>
<th>Cl⁻ (mg/l)</th>
<th>SO₄²⁻ (mg/l)</th>
<th>Cu</th>
<th>Zn (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>玉川</td>
<td>115</td>
<td>8.8</td>
<td>1.8</td>
<td>1.05</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>東川1号</td>
<td>67</td>
<td>2.1</td>
<td>3</td>
<td>0.788</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>霞風台</td>
<td>50</td>
<td>2</td>
<td>2</td>
<td>0.764</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

5. 考 察

5.1. 本流系源泉と玉川3原源泉の鉛亜含量の差異

分析の結果を示すようにこの2群の鉛亜含量には非常に大きな差が見られる。これは鉛亜に限らず、錫、マンガン3, 鉱、エラシ3についても見られることで玉川地域源泉は本流系のものにくらべて含有成分の少ないことが結論される。鉛亜は地表水に比較して鉛亜酸の酸性によって生じた硫黄酸が岩塩を溶解して硫黄酸塩を生じ、これが地下水にかけて流出するものが玉川地域の源泉であると考えている。含まれる成分の少ないことは地上に暴露されることが明らかである。

5.2. 鈴亜含温度の鉛亜と源泉量の比較

過去は最近までの資料によって本流系中での平均鉛亜、鉛亜含温度を考察した。鉛亜含温度がpHが5以下であるのみをもとに行なえば、これらの鉛亜、鉛亜含温度の温度はそれぞれ10, 190 γ/l である。本流系の源泉については鉛亜はほぼこの平均値に近い値を示しているが、鉛亜は鉛亜をはるかに上流側の値を示している。したがって玉川源泉本流系源泉の特性として鉛亜、鉛亜含温度の鉛亜の鉛亜を含む鉛亜がこのような鉛亜が存在することを示している。玉川地域源泉の鉛亜含量は本流平均にくらべ、はるかに小さく、このことからも鉛亜が地域深層のものに由来しているものではないことが示されるよう。

5.3. 鉛亜と硫黄オン、デン酸オンとの関係

このような微量成分と土壤成分との相関を見ることによって玉川源泉を形成する水系を推定することはすでに南らによって鉛亜、鉛亜と源泉量とされている。源泉がしばしば2種以上の水系の混合したものと考えることによっていくつかの源泉を通じてそれぞれのなかの成分分析を都合よく説明できることがあり、現在までのような水系の存在を決定しようとした試みは少ない。ただ一つの成分について得られた結果のみにもとづいて水系を仮定しようとするのは根拠が不十分で、誤った結論に導かれる危険性が大きい。本流系では鉛亜の傾向ののみを述べ、さらに幅広い議論については次報で詳しく述べたい。なお図については分析の精度に問題があるので機械的にに相談を求めることがなく、詳しい検討は省略してまず硫黄オンの含有の多い源泉については鉛亜の含有量が大きいようななることを指す。

表 3. 玉川地域3源泉の分析結果

<table>
<thead>
<tr>
<th>原泉名</th>
<th>水温 (℃)</th>
<th>pH</th>
<th>Cl⁻ (mg/l)</th>
<th>SO₄²⁻ (mg/l)</th>
<th>Cu</th>
<th>Zn (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>玉川</td>
<td>115</td>
<td>8.8</td>
<td>1.8</td>
<td>1.05</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>東川1号</td>
<td>67</td>
<td>2.1</td>
<td>3</td>
<td>0.788</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>霞風台</td>
<td>50</td>
<td>2</td>
<td>2</td>
<td>0.764</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

10) 野口, 上野, "玉川源泉の総合研究" 第4冊 (1956), 玉川源泉研究会 資料 p. 21
エルドマン型酸カリウムの直接合成

（第2報）テトラニトロ・エチレンジアミン・コバルト（III）酸カリウムの直接合成

1) 著者第1報1)において、エルドマン塩にエチレンジアミンを作用させ水に難溶なテトラニトロ・エチレンジアミン・コバルト（Ⅲ）酸カリウム（K[Co(en(NO2)4])を塩化コバルト、亜硝酸カリウム、エチレンジアミン、エチレンジアミン塩酸塩、および過酸化水素から直接合成した。またこのカリウム塩に硝酸カリウムを作用させ、テトラニトロ・エチレンジアミン・コバルト（Ⅲ）酸カリウム（K[Co(en(NO2)4])を得た。得られたカリウム塩について、紫外、赤外吸収スペクトルを測定し、水酸化鉄ゾルに対する溶解性、ペルオキシドガラフによる溶出評価を、さらに塩析法を適用した。凝固点は6.5 mF1)で、一部の有機溶媒に対する平均価にはほとんど差なく、Rfは0.37（上昇法）、メタノール、アセトン、28％アンモニア水系7:2.5:1）であった。

2) 実験とその結果

2.1 合成

2.1.1 テトラニトロ・エチレンジアミン・コバルト（III）酸カリウム（K[Co(en(NO2)4])：塩化コバルト20 gを水30 mlに溶解し、さらに28 gの過酸化水素を水40 mlに溶解した溶液を加え、塩化カリウムで塩に析出させめた。さらに6 gのエチレンジアミン塩酸塩と70％のエチレンジアミン水溶液3 gを少量の水にとかした混合液をモーターでかき混ぜながら、徐々に加え、ついて10％過酸化水素水5～6 mlを同様にして滴下する。溶液を発泡させ、60℃近くの温度にする。熱媒による過熱を防ぎ、溶液を生じると、黄褐色針状結晶として目的物が得られる。収量5～7 g。熱媒から再結晶すると比較的小さな針状結晶が得られる。水アルコール混合溶媒からはコースで美しい針状