水素化ジルコニウムと四塩化炭素との反応

水素化ジルコニウムは、クロロフ法商業級ジルコニウムスポンジに、450℃で精製水素を吸収させたものであり、X線回折および水素吸収測定により、e-ZrH2が確認された。これを鉄製ポールミル中に四塩化炭素（化学用1級）と同量に入れ、48時間振搗（粒度1μ以下）。これをそのまま常温に放置した場合、試料冷却用をつつけた場合、この粉末をろ過ポードに入れた高温の水素化炭素気流で加熱した場合、3つの条件下における反応を試した。

反応後、四塩化炭素に可溶性反応生成物は分留で定置し、不溶性反応生成物は水で抽出部分を分析し、両者に不溶性生成物は、フッ酸により未反応水素化ジルコニウムを溶解除去した残分を分析して定量した。その結果、水溶性反応生成物はほとんど四塩化ジルコニウムであり、不溶性反応生成物は主として炭素であることがわかった。また、四塩化炭素可溶性の反応生成物を昇華、再結晶により精製し、性状、融点、沸点、分子量を測定した結果、六塩化エタンの値とまったく一致した。

各条件におけるこれらの反応生成物の定量値を表1に示す。なお、二の反応の場合にも、多数の塩化水素の生成が認められた。これらの値より、沸点以下110℃の速度では、反応は主として、

\[6\text{C}_2\text{Cl}_6 + \text{ZrH}_2 \rightarrow \text{ZrCl}_4 + 3\text{C}_2\text{Cl}_4 + 2\text{HCl} \]

にしたがって進行し、沸点以上の速度では、

\[3\text{C}_2\text{Cl}_6 + 2\text{ZrH}_2 \rightarrow 2\text{ZrCl}_4 + 3\text{C} + 4\text{HCl} \]

にしたがって進行するものと推定しこう結果を得た。

表 1

<table>
<thead>
<tr>
<th>反応温度 (℃)</th>
<th>ZrH₂</th>
<th>CCl₄</th>
<th>反応時間 (hr)</th>
<th>ZrCl₄</th>
<th>生成炭素 (g)</th>
<th>生成C₂Cl₄ (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>100</td>
<td>200</td>
<td>10000</td>
<td>50</td>
<td>0.1</td>
<td>150</td>
</tr>
<tr>
<td>洞点</td>
<td>100</td>
<td>200</td>
<td>50</td>
<td>0.1</td>
<td>0.1</td>
<td>4</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>200</td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>200</td>
<td>1</td>
<td>40</td>
<td>4.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

（昭和34年8月31日受）

研究速報

あおき配糖体アウクビンの化学構造

藤原新一郎・宇田 尚・小原 平太郎

あおき配糖体アウクビン（I）にアリル型水酸基とアセタール結合が存在することはすでに報告したが、1) 今回は酸化分解により、Iの骨格構造を決定することができたので報告する。

1) 東北大学工学部化学科、仙台市青果町

テトラヒドロアントヒドロアントビニデン（I）をメチル化してゲン酸エストル（II）mp 83~84℃, とし、IIを熱分解して不飽和化物（V, C₆H₅H₂O₂), b.p. 83~85℃, に導き、ついで水銀置換してテトラヒドロアントヒドロオキシアントビニデン（V, C₆H₅H₂O₂), b.p. 78~81℃, を得た。Vは mp 170~171℃
黄蜀葵粘質液の粘性におよぼす気中の酸素の影響
（昭和35年2月5日受理）

猪川三郎・後藤良雄・藤本栄之助

黄蜀葵粘質液が、加熱あるいは放置によって、容易に変性する、粘度をいちじく低下させることは、よく知られた事実である。これは粘液質を保存するに及ぼす上に、きわめて大事な現象である。一方、手すきの和紙の抄造上からみると、とくに（抄纸）の条件を容易にする便を与えるものであり、和紙の抄造上重要な現象である。したがって、この原因については、まだわからていない。著者は、その原因が気中の酸素にあることを知ったので、取りあえず報告する。

実験方法

図に示すような装置を用い、フラスコAに精製粘質液*2を、フラスコBには、あらかじめよく蒸煮した蒸留水を入れ、コック2、3を閉じ、コック1、4を開き、フラスコBを加熱しながら、減圧し、はげしく10分間蒸煮させたのち、コック4を閉じる。つぎにコック3を開けて減圧させ、コック1を開じ、コック2を開けて、酸素を除いた窒素ガスを導入する。ついて、コック2を閉じ、コック1を開けて減圧する。この操作を5回くり返したのち、減圧にして、コック1を開じる。コック4を開き、フラスコAからドライアイスソートを冷却し、フラスコBを加熱して、蒸留水をフラスコAに移し、粘質液の水溶液をつくり、その溶液をそのまま加熱する。

実験結果

酸素を含まない粘質液と、空気中の酸素を含んだ粘質液を、80℃に加熱したときの固有粘度（η/γ）の値を表に示す。

<table>
<thead>
<tr>
<th>加熱前</th>
<th>80℃</th>
<th>90分</th>
<th>80℃</th>
<th>150分</th>
</tr>
</thead>
<tbody>
<tr>
<td>η/γ</td>
<td>2.86</td>
<td>1.47</td>
<td>2.38</td>
<td></td>
</tr>
</tbody>
</table>

酸素を含まない粘質液

この表から明らかのように、酸素を含まない粘質液の固有粘度の低下はきわめて小さい。

*1 水中抽出の粘質液をミルク処理後、セリを含めて試験を用いて流速に伴い、エタノール-エーテル（8:2）溶液を加えて放置後に粘質液をエタノールでよく洗浄後減圧乾燥する。