図3に示したように分離された各フランクションについて，Li⁺，Rb⁺，Cs⁺はさらに別のカラムで処理し，Sr²⁺，Ba²⁺はそれぞれのフランクションを濁縮したのち，いずれも蒸留分析により定量し，その結果は表7に示す。

5 結 語

天然水中の各種陽イオン成分をイオン交換樹脂で系統的に分離定量した結果，
(1) アルカリ金属（Na，K）に重点をおとくとき，主成分の分離定量はA法によるのが適当である。
(2) アルカリニウム，マンガンを主成分として扱うときは，
B法によるのがよい。
(3) リチウム，アルカリ土類，セシウム，ストロンチウム，バリウム等の存在量の少ない元素をイオン交換樹脂で分離定量した。

*14 本法は天然水中の放射性物質の分析，飲料，ガラスなどの分析にも適用できる。

α-ビニレンとホルムアルデヒドの反応

渡辺 雄 じ

α-ビニレンとホルムアルデヒドの反応をつぎの三つの条件下で行った。
(1) リン酸を触媒に使用し，水酸化カリウム中でのパラホルムアルデヒドとの反応。
(2) オートクレープ中でパラホルムアルデヒドとの加熱反応。
(3) 通塩酸を触媒に使用しホルムアリリンとの加熱反応。

(1) の方法では 6-オキシメチル-1,8(9)-p-メタリジエンアセテート，(2) の方法では 3-オキシメチル-2(10)-ビニレン，(3) の方法では 3-メチル-4(4'-メチル-1',3'-ジオキサ-4'-シクロヘキシル)-シクロヘキセン-(1) などの 1,3-ジオキサ型化合物が得られた。

1 緒 言

α-ビニレンとホルムアルデヒドの反応でホルビネールおよび樹脂状物質が生成することは古くから知られている。その後の構造についての報告はほとんど見当らず，Blomquist らがオートクレープ中でパラホルムアルデヒドと α-ビニレンを反応させて得られたホルビネールに 3-オキシメチル-2(10)-ビニレン（1）の構造を与えただののみである。

オレフィンとホルムアルデヒドの反応では二重結合の性質，反応条件によって反応生成物が異なることが知られている。著者はα-ビレンとホルムアルデヒドの反応で，硫酸を触媒に使用した水酸化カリウム中でのパラホルムアルデヒドとの反応では 6-オキシメチル-1,8(9)-p-メタリジエン（1），水酸化カリウム中での加熱反応および塩酸亜鉛を触媒に使用した加熱反応では 9-オキシメチル-1,8(10)-p-メタリジエン（1'），過塩酸を触媒に使用したホルマリンとの加熱反応では 1-メチル-4(4'-メチル-1',3'-ジオキサ-4'-シクロヘキシル)-シクロヘキセン-(1) などの 1,3-ジオキサ型化合物が生成することを認めた。

第2章 反応の反応過程

α-ビニレンと水酸化カリウムおよびパラホルムアルデヒドの混合物にリン酸を滴下し，5℃〜15℃で反応させると bp 108°〜113°C を示すアセタールが反応油に対する 38.4% の収率で得られる。このエステルをケニン化して得られるアルコールは Cl₃H₂OF₂ に一致する。赤外線吸収スペクトル（IR）は 1020 cm⁻¹ でアルコールの吸収，885 cm⁻¹ に三窓酸エチレンの吸収，885 cm⁻¹ に三窓酸エチレンの吸収。

3 実験の部※1

3.1 α-ビネン

市販ガムテレペン油を充てん塔（長さ 1 m, 理論段数 38 段, 遷移比 1:5）で精留して得た bp155°〜156°C の留分を使用した。

\[n_{\text{BP}} = 1.4660, \quad d^2_\text{BP} = 0.8600, \quad [\alpha]_\text{D} = -37.0°. \]

3.2 反応（I）

3.2.1 反応操作：カタメジール, 温度計, 冷却器, 滴下漏斗をつけた 1l 四口フローカラスに α-ビネン 200 g, 水酸化ナトリウム 50 g を加え, 沸騰下で弱アルカリ性に保ちながら一晩煮沸する. 唱話に待つ反応操作を単位量に注ぎ, エチルで充分挿出してエーテル層を分離し, 水酸化ナトリウム溶液で乾燥後エーテルを留去し, 前記充てん塔で精留した. 表 1 は留分結果である。

![反応経路](chart.png)

Blomquist らの方法にしたがい, α-ビネンとパラホルムアルデヒドをオートクレープ中で 180°C, 9 時間反応させると C₆H₅O₃F 酸化物に相当する残分が反応溶に於て 5% の収量で得られた. このアルコールの定数, 酸性フタ酸エステルの融点（144.5°〜146.0°C, 文献値 144°〜145.5°C）ともに Blomquist らの得たとよく一致した.

過塩素酸を触媒に使用して α-ビネンとホルマリンを加熱反応させると樹脂状物質が生成する. 反応条件を知りかにすると未反応のテルペンが多数 bp₅, 100°〜105°C を示す留分から C₆H₅O₃F₁ に相当する物質が得られる. このものの IR はテルペンとホルマリンから得られたと 1-Methyl-8-イソプロピル-2,4-ジオキシビシクロ [4,4,0] デカン (W) の混合物の IR よく一致し, 800 cm⁻¹ に二重鍵が存在する. さらに bp₅, 104°〜105°C に相当する留分を得た. そこで C₆H₅O₃F₁ に相当する物質は (W) を主成分であると推定した. W の沸点は bp₅, 150°〜180°C は C₆H₅O₃ にかなりよく一致し, W と同じ条件で還元すると 2,9 同じ様直イシミレル-4-メチル (X) で二酸化炭素が生成する. 同様に W の沸点は 1-Methyl-8-(4'-メチル-1,3'-ジオキサ-4'-シクロヘキシル)-2,4-ジオキシビシクロ [4,4,0] デカン (W) であることを推定した.

<table>
<thead>
<tr>
<th>反応結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>融点 (°C/mmHg)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

留分 1, 留分 2 は定数から未反応 α-ビネンおよびシメンチンであると認めた.

3.2.2 6-オキシメチル-1,8(9)-p-メタジェン (II): 留分 8 を再蒸留してつぎのような分子をもつエステル 60.0 g を得た.
bp₅, 106°〜107°C, n₁₀₅°C = 1.4888, d₁₀₅°C = 0.9691, EV (エステル価) = 250 (I のアセテートとしての計算値 269). エステルをエタノール水酸化カリウムでケン化し, 常法により処理したのちケン化生成物を減圧蒸留した.
bp₅, 107°〜109°C, n₁₀₅°C = 1.5000, d₁₀₅°C = 0.9599, [α]₁₀₀°C = -49.6°. MR (分子収縮) = 50.90 (C₁₂H₁₇O₂F₂ (I) としての計算値 51.39). フェニル藍 Expenses mp 77.5° ~ 78.0°C.

分析値 C 79.50% H 10.78% C₁₂H₁₇O₂ (I) としての計算値 79.52% H 10.85%

6-オキシメチル-1-p-メタジェン (I) 2.5822 g をエタノール中でラネーニッケルを触媒にして常温常圧下水素添加した.
水素吸収 363 cc (計算値 350 cc). 常法により処理して II を得た.
bp₅, 104°〜106°C, n₁₀₅°C = -1.4840, d₁₀₅°C = 0.9938, [α]₁₀₀°C = -15.5°. フェニル藍 Expenses mp 76.5°〜77.0°C. II のフェニル藍と混融して融点低下を認めない.

——6-オキシメチル-p-メタジェン (II) — 1. 2.7345 g をエタノール中で金白金を触媒にして常温常圧下水素添加した.
水素吸収 755 cc (計算値 740 cc). 常法により処理して II を得た.
bp₅, 104°〜106°C, n₁₀₅°C = 1.4710, d₁₀₅°C = 0.9200, [α]₁₀₀°C = +5.5°.

※1 留分は摂氏でない. [α]₁₀₀°C は試料（液体）のまま測定した.
5) 1-p-メタジェンを 3.2.1 の方法で処理して合成した. 3.3 記号
2-メチレン-β-メントanol (Y) —— W 8.0 g を酸性硫酸カリウム 16.0 g と 170℃～190℃ に 4.5 時間熟した。反応物を水中に投じ、油状物をエーテルにとり、エーテル層を水で洗い、無水硫酸ナトリウムで乾燥後エーテルを留去した。減圧蒸留してつぎのような性状の T を 3.5 g 得た。bp0 88℃～90℃, n 20℃ = 1.4658, d 20℃ = 0.8588。
—— dl-カルボン酸 (W) —— 3 g 水 100 cc, 過マンガン酸カリウム 6.0 g の水 50 cc 溶液を混合し、15 時間ふりまぜて酸化した。反応後過酸化水素で過剰の過マンガ酸カリウムを分解し、二酸化マンガンを dp 別し、液をエーテルで抽出した。エーテル層を水で洗い無水硫酸ナトリウムで乾燥後エーテルを留去した。常法にしたがい残剤を塩素セチルパルプで処理し、mp 174℃～175℃のセミカルバゾンを 0.5 g 得た。dl-カルボン酸セミカルバゾンと混ぜて融点降下を示さない。

2.3. dl-α-テルピネオール、dl-α-イソルネオール：留分 6 を再蒸留してつぎのような性状の塩 30.0 g を得た。bp0 95℃～102℃, n 20℃ = 1.4630, d 20℃ = 0.9622, [α]D = 0°, (E)-1,4658, (B)-0.9603。このアルコールを -10℃に冷却し、抽出した結晶を石油エーテルから再結晶した。収量 1.5 g, mp 209℃～211℃(封管中)。p-ニトロペンゾエート mp 130.5℃～131.0℃。dl-α-イソルネオール=p-α-ニトロペンゾエート (mp 131.0℃) と混ぜて融点降下を示さない。dl-α-テルピネオールを除去した母液からフェニルカルトンの生成をみとめた。mp 112℃～113℃のフェニルカルトンを生成したので dl-α-テルピネオールフェニルカルトン (mp 113℃) と混ぜた。融点降下を示さない。

3. 反応 3.3.1 反応操作：650 cc ステンレス製オートクレーブに α-ピネン 240 g、パラホルムアルデヒド 50 g を入れて 180℃, 9 時間ふるい合わせて反応させた。反応後内容物をとり出し、10%水酸化ナトリウム水溶液を 3 回洗ったのち水洗い、ろ過を蒸乾してメタノールで乾燥してリグロインから再結晶し、mp 145℃～146℃、(リグロインから再結晶)。この酸性フタル酸エステル 9 g エタノールで水酸化カリウムでケン化し、常法によって処理し、つぎのような性状の 1 を得た。bp0 105℃～107℃, n 20℃ = 1.4984, [α]D = -16.0°, MR = 49.60 (C6H5CH2FO1) としての計算値 49.66。常温常压下エタノールとと白金黒を使用して水素添加をした。試料 1.2255 g。水素吸収量 173 cc (C6H5CH2FO1 (1) としての計算値 165 cc)。

3.4 反応 3.4.1 反応操作：α-ピネン 100 g, 市販 37% ホルマリン 240 g, 60% 過塩素酸水溶液 4.0 cc をカキメゾン、温度計、冷却器をつけて 500 cc 三つコロベに入れて、内温 95℃～100℃で 6 時間しばくかきませて反応させた。反応後水層を除却し、油層に 10%水酸化ナトリウム水溶液、水の順で洗い、無水硫酸ナトリウムで乾燥後無水硫酸ナトリウムをロ引き、収量 120 g、減圧蒸留してつぎのような性状を得た。留分 1 bp0 105℃～106℃, 留分 2, bp0 100℃～130℃, 留分 100 g, 収量を変化させて各留分の収量を比較すると表 2 のとおりである。

<table>
<thead>
<tr>
<th>反応温度</th>
<th>収量 (g)</th>
<th>収量 (g)</th>
<th>収量 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55～60</td>
<td>95.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>65～70</td>
<td>80.0</td>
<td>15.0</td>
<td>5.0</td>
</tr>
<tr>
<td>75～80</td>
<td>12.0</td>
<td>12.0</td>
<td>75.8</td>
</tr>
<tr>
<td>85～90</td>
<td>6.5</td>
<td>7.8</td>
<td>97.5</td>
</tr>
<tr>
<td>95～100</td>
<td>6.5</td>
<td>6.5</td>
<td>100.0</td>
</tr>
</tbody>
</table>

3.4.2 1-メチル-(4'-メチル-1'-3'-ジオキサ-4'-シクロヘキシル)-シクロヘキセン (Ⅰ) (VII)：留分 2, 40 g を vindar 分留管をつけて精製してつぎのような性状の W 23.8 g を得た。bp0 104℃～105℃, n 20℃ = 1.4840, d 20℃ = 1.0002, [α]D = -0.8°。MR = 55.05 (C6H5CH2FO1) としての計算値 56.04。

分析値 C 73.28% H 10.31% C6H5CH2FO1 (W) としての計算値 73.48% H 10.27% C6H5CH2FO1 (W) としての計算値 73.56% H 12.94% C6H5CH2FO1 (W) としての計算値 73.56% H 12.94% C6H5CH2FO1 (W) としての計算値 73.56% H 12.94% C6H5CH2FO1 (W) としての計算値 73.56% H 12.94%

3.4.3 VIII: 3.4.1 の残分物 250 g をクライゼンフラスコで再蒸留してつぎのような性状の物質 183 g を得た。bp0 140℃～180℃, 分子量 (ピネンを使用した校正降下法) 263 (C6H5CH2FO1 (W) としての計算値 256)。

分析値 C 67.03% H 10.01% C6H5CH2FO1 (W) としての計算値 67.03% H 10.01%

3.4.4 3-オキシメチル-2-(10)-ピネン (I)：留分 3, 10 g を無水フタル酸 10 g、ペンゼン 50 cc とともにあたって第一アルコールを酸性フタル酸エステルとして単離した。収量 10.8 g。mp 145℃～146.0℃、リグロインから再結晶。この酸性フタル酸エステル 9 g エタノールで水酸化カリウムでケン化し、常法によって処理し、つぎのような性状の 1 を得た。bp0 105℃～107℃, n 20℃ = 1.4984, [α]D = -16.0°, MR = 49.60 (C6H5CH2FO1) としての計算値 49.66。常温常圧下エタノールと百金黒を使用して水素添加をした。試料 1.2255 g。水素吸収量 173 cc (C6H5CH2FO1 (1) としての計算値 165 cc)。

3.4 反応