ヨウ素形陰イオン交換樹脂と1,2-ジプロムエタンおよび1,2-ジクロルエタンとの反応によるエチレンの生成

(昭和36年4月25日受理)

浦田澄清†・金塚文哉†・垣花秀武††

ヨウ素イオンで飽和した交換樹脂をもつ塩基性陰イオン交換樹脂 Amberlite IRA-400 で1,2-ジプロムエタンおよび1,2-ジクロルエタンのヨウ素化をそれぞれヨウ素と反応させ、1,2-ジクロルエタンを経てエチレンが生成するか否かを試みた。すなわちヨウ素形陰イオン交換樹脂 50 g (0.132 mol のヨウ素に相当) とジハロゲン化物 100 g (0.532 mol のオキソ化物、1.012 mol の塩酸塩に相当) をつまった有機浴液で反応させた結果、1,2-ジプロムエタンでは反応時間1時間（一定）で50℃、80℃、100℃の反応温度で15.5、360、850、1277 ml のエチレン（標準状態における容積に換算した値）と反応速度 0.01、49.2、82.2、84.1%を得た。

また1,2-ジクロルエタンでは 50℃、80℃、100℃で 2.5、23.8、590 ml のエチレンおよび 0.39、4.38、44.34%の換算率を得た。この結果反応条件ではニクロル化物よりニオキソ化物がはるかにヨウ素形陰イオン交換樹脂のエチレンに影響を受け易い。またそれらの反応は一般に反応温度が 100℃ 前後においては一層酸性に進行する。ニオキソ交換樹脂の使用温度は 100℃、1時間で反応させたのみヨウ素形に再生する操作を7回試みた結果、反応前の約 17%の換算容積の低下がみられた程度であった。

1 緒言

ヨウ化トリウムおよびヨウ化カリウムのアセトン溶液をもちいて Finkelstein はいろいろの有機物（有機化合物）からヨウ化物を生成し、また1,2-ジクロルエタンは1,2-ジプロムエタンを塩化水素（I）や塩酸アンチモン（V）と加熱（150℃～180℃）することによって得られることが知られている。著者らはモノヨウ化アルカリを各種ヨウ素形陰イオン交換樹脂に処理することによってヨウ素の置換を行う、その結果を前報11に述べた。本報ではジハロゲン化物に対し同様にニオキソ交換樹脂によるヨウ素置換が可能であるか否かを調べた。すなわちヨウ化カリウムメチレン溶液 X (CH2)4X (1.2-ジプロムエタンおよび1,2-ジクロルエタンをヨウ素形陰イオン交換樹脂 Amberlite IRA-400 とそれぞれ混じり、加熱、かきまぜながら反応を行なった。反応温度、時間、被空間速度（反応槽使用の場合）などの反応条件がいかにヨウ化ガロンが反応槽に移動しているかに影響を及ぼすかについての知見を有する形で報告する。

2 実験方法

2.1 試薬

1,2-ジプロムエタンおよび1,2-ジクロルエタンは市販の試薬を無水亜硫酸カリウムで蒸発したのち別途蒸留を行って精製し、それぞれbp 131℃～132℃、83℃～94℃のものを使用した。ヨウ素形陰イオン交換樹脂は塩亜化のものである。すなわち市販の強塩基性陰イオン交換樹脂 Amberlite IRA-400(酸素形)をカリウムに充てんし、これに約 2N の水酸化ナトリウム溶液を浸し、完全に水酸基にかえる、ついて蒸留水で十分洗浄して反応を停止したのち、約2N のヨウ化カリウム溶液を樹脂から滴下し、さらに水酸基にかえる。このようにしてヨウ素形になる樹脂をふたび水洗し、樹脂をとり出して乾燥(50℃、40 hr)したものを使用した。

2.2 反応装置及び実験操作

図1(次頁)のような反応装置を組み立てて実験を行なった。すなわちガラス製の反応器(A) (内径 2.5×高さ 50cm)を絶縁長い
誘（B）（内径 2.8×高さ 44cm）に挿入し、反応塔の上下両端にはそれぞれ分液漏斗（C）（容量 100mL）を受器（E）を連結し、塔の内側中央に温度計（D）を取り付けた。なお反応中に発生するガスは塔の上部（A）および下部（B）の両端から反応器（C）内部で合流し、さらにコック（D）を経てガス捕集ビン（G）（5L）へ導く。実験を行う際にはまず反応塔（A）の底部に 2～3g のガラス綿をつめ、その上にヨウ素形陰イオン交換樹脂（H）を 50g 充てんする。つぎに反応装置全体のガス泡の有無をしたのちコック（f）、コック（d）を閉じると同時にガス取り出し口のスクリューコック（g）を開き、水槽（I）の水をコック（e）を開けてガス捕集ビン（G）に充満させる。つぎにスクリューコック（g）、コック（e）を除じのちコック（f）、コック（d）を開き、塔（A）内の樹脂を所定の温度まで昇温させる。そのさいガス捕集ビン（G）に残った装置内の空気はふたたびコック（f）を用いてガス捕集ビン（G）へ水を満して（g）部から外へ放出する。このようにして一定温度にたった樹脂柱へ 100g のソルフォ酸を分液漏斗（C）からあるいはの前液空間速度で滴下する。発生するガスは目盛（J）（1 目盛 5 ml）を計ったガス捕集ビン（G）へ水と置換しながら貯え、次第に増加するその容積を 5 分毎に測定した。

反応終了後ガス捕集ビン（G）内のガスの一部を水槽（I）の水と置換してガスを取り出し口から一定量採集し、これを分析した。また別の目盛（J）（1 目盛 5 ml）を計ったガス捕集ビン（G）へ水を満して（g）部から外へ放出すると、このようにして一定温度にたった樹脂柱へ 100g のソルフォ酸を分液漏斗（C）からその液体空間速度で滴下する。発生するガスは目盛（J）（1 目盛 5 ml）を計ったガス捕集ビン（G）へ水と置換しながら貯え、次第に増加するその容積を 5 分毎に測定した。

A：反応塔，B：絶縁電気師，C：分液漏斗，D：温度計，E：受器，F：冷却管，G：ガス捕集ビン，H：交換樹脂，I：水槽，J：目盛

図 1 反応装置略図

2.3 反応液の測定

2.3.1 隣イオン交換樹脂中のハロゲンおよびエチレンの定量

2.3.1 1 隣イオン交換樹脂中のハロゲンおよびエチレンの定量

2.3.1 に述べた方法によって調製し、乾燥したヨウ素形陰イオン交換樹脂の 0.3g を精粋してカウムに示す。約 2N の硝酸カリウム溶液を 30 分間で 30 ml 滴下する。つぎに約 100 mL の蒸留水を流し、流出液の全量を正確に 200 mL とする。このうち 50 ml をとり、蒸留水にて 100 ml に希釈して外の溶液をつくって。これに Mohr の方法で分析し、ヨウ素含量を求めた。一方残りの内容物部をアセトアリール 2g と硫酸（1:1）20 ml を加えて蒸発し、遊離するヨウ素をヨウ化カリウム溶液（10％）で中和した。これに 0.1N のチオ硫酸ナトリウム溶液で滴定した。このような方法で反応前後のヨウ素形陰イオン交換樹脂の交換容量（m eq/g）を求める。反応後の陰イオン交換樹脂内のハロゲンの定量はつぎのように行った。すなわち反応溶液から別分離した樹脂はアルカリおよび水で洗浄後乾燥（50℃，40 hr），その全重量を精粋する。その一部を食べる 0.3g を精粋したものをつぎに反応前の交換容量を示した前記の方法によって同様に分析を行なった。そこで Mohr の方法によって求まったヨウ素重量は樹脂内のヨウ素を一部生成して入った臭素（または塩素）量と未交換のヨウ素量とは同じである。一方チオ硫酸ナトリウムの滴定値から求めた値は樹脂内に残存する未交換のヨウ素量である。したがって前値から後値を差し引いた値が交換のため樹脂内に入った臭素（または塩素）量である。これより分析においての同様に交換比率（％）を[(反応後の臭素または塩素量)/(反応前のヨウ素量)] ×100 の式から算出した。なお発生したエチレンの定量は生成したガスを臭素水によって吸収させ、ヨウ化カリウムおよびチオ硫酸ナトリウムの溶液をもつ通用のガス分析法で行なった。

3 結果ならびに考察

実験はすべて 0.132 mol のヨウ素量に相当する陰イオン交換樹脂（50 g）に対して 1,2-ジプロピレタン 0.532 mol（100 g）、1,2-ジクロロエタン 0.100 mol（100 g）のモル比（または重量比）で反応を行なった。

3.1 1,2-ジプロピレタンとヨウ素形陰イオン交換樹脂

3.1.1 反応温度と置換反応の関係：反応時間一定（20, 60 min）のもとでいろいろの反応温度について実験を行なった。その結果表示される 1 の表とである。これからわかるように同一反応条件では大抵反応塔、あるいは三つロフラスコのいずれを使用してもほとんど反応には差異が認められない。また 50℃、1 時間程度の比較的低い反応温度では置換比約 1.0%。エチレン 15～18 ml のわずかな反応にとどまるが、80℃、1 時間では置換比 50%，エチレン 400 ml となり反応は進行する。なお反応温度が 80℃ から 130℃ へと次第に上昇するにつれてエチレンの生成量も増やわり、また置換比も增大する。ただし 130℃、1 時間（反応塔の場合は）の条件下では 1.50 l のエチレンを得ただけの場合とは樹脂内に臭素が 132 m eq 存在せずくなかったことを示すが、反応後の樹脂から硝酸カリウムで溶出した臭素量は 73.05 m eq にすぎなかった。この原因はつきのように考えられる。

5) 鳥藤, “定量分析法” p. 131 (1941).
表1 1,2-ジプロピレタンとヨウ素形交換樹脂との反応結果

<table>
<thead>
<tr>
<th>反応</th>
<th>時間</th>
<th>ヨウ素の濃度</th>
<th>エタノール</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.0</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>2.0</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>3.0</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>

すなわち 130°C の高温度における反応ではヨウ素形交換樹脂と1,2-ジプロピレタンとの間に急速に置換反応が進行し、生成された1,2-ジヨドエチレンはただちに熱分解を受け、エチレンを生成する。なおこの際、ヨウ素は未反応の1,2-ジプロピレタンに消解しながらすでに一部がヨウ素形に置換されている樹脂層を通過するために1度ヨウ素形からヨウ素形にかわった樹脂がふたたびヨウ素形に一部が置換される。したがってヨウ素の生成量にくらいべてヨウ素量（樹脂内）の小さい値を示す。またヨウ素形を再置換されるさいに単一のヨウ素形のみならず、他のなんらかの形をもったヨウ素ヨウ素が強イオン交換樹脂の交換性に残存、固定しているため硝酸カリウムによる溶液溶液中のヨウ化物を除いた残存反応後の樹脂内の総ヨウ化物（ヨウ素量とヨウ素の和）のものも小さくなると考えられる。事実反応前の交換容量の約 60% である。この交換反応の減少は高温度での樹脂の破壊によるものの他ではないことがヨウ素の反応結果からあらかじめ予想されている。すなわち反応後のイオン交換樹脂に約 2N の硝酸ナトリウム溶液を十分滴下し、赤褐色の樹脂を原色（黄色）にもどしたのちよく水洗を行う。つぎに约 2N の水酸化ナトリウム溶液を加え、ふたたび水洗する。最後に 2N の硝酸カリウム水溶液でヨウ素形に再生する。この再生ヨウ素形イオン交換樹脂の交換容量は反応前約 90% であった。反応温度が 110°C 以下の場合も反応後のヨウ素量とヨウ素の合計は反応前の交換容量よりも減少する。しかし硝酸ナトリウム溶液にあらかじめ水酸化ナトリウム溶液で洗浄した硝酸カリウム樹脂で再生すると反応前の交換容量はほとんど変化しない。

表2 1,2-ジプロピレタンとヨウ素形交換樹脂との反応

<table>
<thead>
<tr>
<th>反応</th>
<th>時間</th>
<th>ヨウ素の濃度</th>
<th>エタノール</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.0</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>2.0</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>3.0</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>

表3 1,2-ジプロピレタンとヨウ素形交換樹脂との反応

<table>
<thead>
<tr>
<th>反応</th>
<th>時間</th>
<th>ヨウ素の濃度</th>
<th>エタノール</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>1.0</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>2.0</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>3.0</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>

3.1.3 ヨウ素形イオン交換樹脂とヨウ素形イオン交換樹脂を硝酸ヨウ素に再生成し、7 回くらいかたかたで実験を行なった。反応後の樹脂の再生方法はまず反応溶液から分離した樹脂をカルメルに浸す。その後お水で洗浄したのち、約 2N の硝酸ナトリウム溶液を加え、十分滴下する。つぎにふたたび水洗し、2N の水酸化ナトリウム溶液で水酸化塩を生成する。なおこのさい樹脂側に遊離してくるイオウを除くため、さらにエチアルコールを滴下して、最後にふたたび水洗する。こうして水酸化塩にかかった樹脂柱を用いたヨウ素形イオン交換樹脂を用いた実験結果を示す。これより反応の回数を次第にかくかくすることで反応樹脂の交換容量は徐々に減少し、7 回で実験で約 17%（反応前の交換容量に対する値）減少した。したがって 110°C の条件下では少なくも 10 回くらいは十分使用することができる。
3.2 1,2-ジクロルエタンとヨウ素形陰イオン交換樹脂
1,2-ジプロポメタンの場合とまったく同様に 1,2-ジクロルエタンとヨウ素形陰イオン交換樹脂とを三つ口フラスコに混合し、それぞれ表 4 に記載するような条件で反応を試みた。その結果を表 1 に示した。1,2-ジプロポメタンの場合と比較すると置換反応はかなり困難である。すなわち 100°C、1 時間での置換率およびエチレンの生成量はともに 1,2-ジプロポメタンの場合の約 60% であった。

表 4 1,2-ジクロルエタンとヨウ素形交換樹脂との反応結果
<table>
<thead>
<tr>
<th>ジクロルエタン</th>
<th>100g (1.012mol)</th>
<th>树脂</th>
<th>50g (132m·eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>反応</td>
<td>反応後の樹脂内</td>
<td>置換エチレン生成量</td>
<td></td>
</tr>
<tr>
<td>(℃)</td>
<td>(min)</td>
<td>(m·eq)</td>
<td>(m·eq)</td>
</tr>
<tr>
<td>(C)</td>
<td>(m·eq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>0.50</td>
<td>135.40</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>0.53</td>
<td>135.30</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>4.37</td>
<td>130.61</td>
</tr>
<tr>
<td>80</td>
<td>60</td>
<td>5.96</td>
<td>129.10</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>25.36</td>
<td>109.30</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>28.34</td>
<td>101.62</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>60.30</td>
<td>70.05</td>
</tr>
</tbody>
</table>

3.3 エチレンの生成量と反応時間
反応温度一定のもとで 1,2-ジプロポメタンおよび 1,2-ジクロルエタンヨウ素形陰イオン交換樹脂と混ぜる時間で反応させ、その結果を図 2 と図 3 に示した。1,2-ジクロルエタンを溶液 100°C 以下であるため 120°C では反応を行わなかったが図 2 と図 3 を比較してみた場合、反応温度、1,2-ジプロポメタンの場合は 1,2-ジプロポメタンより 1,2-ジクロルエタンの場合

4 結 語
本報の実験結果より 1,2-ジプロポメタンおよび 1,2-ジクロルエタンヨウ素形陰イオン交換樹脂とを 100°C またはそれ以上

図 2 1,2-ジプロポメタンとヨウ素形交換樹脂との反応
(三つ口フラスコによる反応)
エチレンの生成量と反応時間の関係

図 3 1,2-ジクロルエタンとヨウ素形交換樹脂との反応
（三つ口フラスコによる反応）
エチレンの生成量と反応時間の関係

どの反応は進行しない。ところ 1,2-ジプロポメタンの場合は 120°C ぐらいの高温になると 30 分で大部分の反応が行なわれ、平衡状態に近づく。しかし 80°C ～ 100°C の間では滴点の差と反応を伴う水が反応を進めるが、かえってエチレンの生成量が増加する。1,2-ジクロルエタンでは 80°C でもほとんど反応は行なわれず、かつ時間の経過もエチレンの生成に影響しない。100°C で封じ反応も進み、60 分で 590 mL のエチレンを生成した。

本報の化学試験12 1,2-ジプロポメタンおよび 1,2-ジクロルエタンノウ素形陰イオン交換樹脂と 100°C またはそれ以上

C₂H₄Br₂ + 2ReI ⇌ (C₂H₂I₂ + 2ReBr) (1)
C₂H₄Cl₂ + 2ReI ⇌ (C₂H₂I₂ + 2ReCl) (2)

これらの (1), (2) 式中のカッコ内に示すように、1 度中間生成物として 1,2-ジクロロエターノン、これが熱分解を受けエチレンと遊離する。したがって、高温加熱の温度ほど、反応の平衡は生成量へ移行し、エチレンの生成量が増大すると考えられる。しかしながら 1,2-ジクロロエターノンのほかに中間生成物として (1) 式では 1-ヨード-2-プロポメタン、(2) 式では 1-ヨード-2-クロロエタンなども生成することが予測される。なお実験結果からおそらくヨウ素形イオン交換樹脂によるジヒロゲン化エターノンの置換の容易さは基質、塩基化、誘導体の相違であると考えられる。そしてフェタ Thornborn の反応はジヒロゲン化エターノンのみでなく、炭素数の多い同族系列のジヒロゲン化エターノン系化合物などとの置換反応によりそれぞれの不飽和炭化水素の生成も可能であると推測される。