塩酸溶液におけるタリウム(I, III)の陰イオン交換

岡 好 良†・阿 部 重 喜†

塩酸溶液におけるタリウム(I, III)の陰イオン交換樹脂に対する影響

ウラニウム塩の酸性溶液に分離するため、交換樹脂を用いることがよく知られている。ウラニウムの除去に効果的な交換樹脂が多数報告されており、その中でも特にイオン交換樹脂の研究が進んでいる。しかし、タリウムの陰イオン交換についての詳細な報告は少ない。

タリウムの陰イオン交換は、交換樹脂の種類や溶液のpH、イオン強度などによって影響を受ける。タリウムの陰イオン交換についての実験結果を示すと、交換樹脂の種類によってはタリウムの除去率が著しく異なることがある。タリウムの陰イオン交換についての詳細は、次の文献を参照することをおすすめする。

5) 森山，"構造化学" Vol. 1，p. 56 (1952) 共立出版。
6) 森山，"構造化学演習" Vol. 1，p. 58 (1953) 共立出版。
7) R. W. G. Wyckoff, "Crystal Structures" Vol. 1, Interscience。
8) 森山，"構造化学演習" Vol. 1，p. 220 (1953) 共立出版。

† 東北大学理学部化学教室，仙台市午方町

† 東北大学理学部化学教室，仙台市午方町
1 緒 言

著者らはさきに陰イオン交換樹脂 Dowex 1-X8 を使ってトリウム塩ならびにトリウム C を吸着分離し、しばらく放置したのも 1mol/l の塩酸で溶離を行ない、トリウム C 1 (T1-208) が容易に溶出すのをみた。

しかしタリウムの陰イオン交換に関しては従来さまざまな結果が報告されている。たとえば Kraus と 2) は 5 値のタリウムは塩酸溶液から陰イオン交換樹脂に強く吸着されるが、1 値のタリウムはあまり吸着されないとした。しかるに Gleus と 3) は 0.5 mol/l の塩酸溶液からトリウム C は弱塩基性陰イオン交換樹脂 NaIeCl SAR に 90% ほど吸着されるとした。ただしこの数値のはずも相互の成分のためであると思われた。また Horne と 4) は塩酸 10-3 mol/l から 10 mol/l の濃度において 1 値および 3 値のタリウムの分布係数を求め、前例の分布係数として最大約 10^6 の値をえている。ただし実験値は 1 値、3 値とも非常にばらつき、再現性のよい結果がえられなかった。なお Kraus と 5) は最近あらためて実験を行い、10^-3 mol/l 程度のタリウム (I) は吸着されないとしている。

以上のように 1 値のタリウムの陰イオン交換樹脂に対する性質に関しては一致した結果がえられていない。それでその原因を明らかにする目的でタリウム-204 を使ってその性質を検討した。

2 実験方法

樹脂としては 200～400 メッシュに粒子をえた Dowex 1-X8 の塩素形のものを用いた。使用にあたって 2 mol/l の水酸化トリアミンおよび塩酸溶液で十分処理した。平衡液によって分布係数を求めるさいには空気で 45°～50°C に約 2.5 時間加熱乾燥し、塩化カルシウム乾燥器中に保存したものに一定量はかりとって用いた。

タリウム (I)-204 は塩酸溶液を 1 mol/l の塩化溶液で分離して保存し、使用するとき適当にうすく、かつ空気中あるいは空気中で還元して使った。なおタリウムの浸出は無窒素状の程度であった。

還元液中におけるタリウムの還元はつきのようした。図 1 の A はボンベで、窒素は日本製品の高純度窒素を 1 倍した。まず塩化カルシウム管 B をおいて乾燥し、つぎに 410°～430°C に加熱したガスの白煙をとおしてなお残存する酸素を除いた。この精製した窒素ガスを 1 mol/l の塩酸溶液のタリウム (I)-204 溶液に三方カクコをとりつつ通じ、還元器の中の空気の分離する。空気を十分還元したのも、カクコを切りかけて酸化亜硫酸水を滴下し、しばらく湯浴で溶けて還元を促進し、つぎにふたびカクコを切りかけて窒素を通じつつ湯浴で分離の亜硫酸ガスを除去し

た。以上のように得られたタリウム溶液はそのまま窒素気中にはおいた。この溶液は塩素イオン-ペンゼン溶液を脱色しなかった。

放射能の測定は神戸工業製ガイガーカウンター、PC-7, SC-100-А を用いた。

3 結果および考察

3.1 空気中で還元した場合

タリウムは 1 mol/l 水酸化溶液をあらかじめ還元して用いた。ただしこの場合は空気中で還元して共吸収陰イオンカラムにたくわえた。すなわち常温で亜硫酸ガスを充和し還元し、湯浴上で約 15～20 分加温しての亜硫酸ガスを除去して保存した。これから一定量をとり、径 10 mm、長さ 30 mm の樹脂柱に加え同濃度の塩酸溶液 20 ml を流下したのち、流出したタリウムの量を求めた。ただし流速はすべて 0.2～0.3 ml/min ほどとしていた。結果は表 1 に示した。

<table>
<thead>
<tr>
<th>空気中で還元した場合</th>
<th>穀溶液</th>
<th>加えたTI</th>
<th>流出溶液中のTI</th>
<th>流出率</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 1</td>
<td>32724±182</td>
<td>32871±182</td>
<td>100.4</td>
<td></td>
</tr>
<tr>
<td>b) 2</td>
<td>31683±179</td>
<td>31883±178</td>
<td>99.1</td>
<td></td>
</tr>
<tr>
<td>c) 3</td>
<td>31683±179</td>
<td>31883±178</td>
<td>99.1</td>
<td></td>
</tr>
<tr>
<td>d) 4</td>
<td>31683±179</td>
<td>31883±178</td>
<td>99.1</td>
<td></td>
</tr>
</tbody>
</table>

表中 a) は還元後過剰の亜硫酸ガスを除くで湯浴上で約 20 分加温したもの。ただちに樹脂柱をとおした場合で、流出液
３．３ 硝酸塩を共存させた場合

上に述べたように従来１価のタリウムの物理に関しても酸塩の
結果は報告されているが、空気酸化による３価のタリウムの
生成によるものではないかと考えられる。そこでつぎに還元剤
を用いたり、あるいは還元操作をほどこさず、入手したタリウ
ム-204の硝酸塩溶液に酸酸塩の飽和溶液を加え、そのままカ
ラム法および平衡法で吸収実験を試みた。その結果は図3にあ
げた。いずれの場合もタリウムは実質的にまったく吸収され
ない。

表 3 亜硝酸を共存させた場合

<table>
<thead>
<tr>
<th>塩酸濃度 (mol/l)</th>
<th>加えたTI (counts/10min)</th>
<th>水素酸素または</th>
<th>終了時TI (counts/10min)</th>
<th>残存率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 0.1</td>
<td>16621±130</td>
<td>16778±131</td>
<td>100.9</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>29601±173</td>
<td>29701±181</td>
<td>101.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>28750±170</td>
<td>28750±167</td>
<td>98.0</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>32851±183</td>
<td>33140±183</td>
<td>100.8</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>32851±183</td>
<td>32458±181</td>
<td>98.7</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>32851±183</td>
<td>32231±181</td>
<td>98.4</td>
<td></td>
</tr>
</tbody>
</table>

注）a) カラム法による場合。b) 平衡法による場合。

3.4 タリウム（II）の行

塩酸溶液中における3価のタリウムの分布係数は平衡法にしたがって求めた。

Horneらは3価の場合にばらつきが出た結果を示し、分布係数は最大
値をとっている。すなわち、アンチモン（V）と同様に平衡
で再現する化学結果を導くには酸酸化剤を共存させておくことが
必要であるとされている。それらでタリウム（I）を塩素水で酸化し
て3価とし、少量の塩酸の存在するところで実験した。その結果
は図2にあげた。

![図2 塩酸溶液中のタリウム(II)の分布係数曲線](image)

7) S. A. Reynolds, W. A. Brooksbank, Jr, Nucleonics 11, Nov. 46 (1933).
タリウム（II）はタリウム（I）に反し強く交流吸収され、1 mol/l の塩酸溶液で分布係数は約 3×10^8 を示し、塩酸液でも 800 ほどを示した。図に示した結果は Kraus らの結果とよく一致した。

3.5 タリウム(III) の溶液

陰イオン交換樹脂に吸着されたタリウム（II）の溶液については、塩酸溶液あるいは塩酸液が用いられた。しかし非常に多量の溶液液を必要とし、たとえば 4 mol/l の塩酸液を使った場合約 600 ml を要し不便である。著者らは 1 倍のタリウムの吸着量が小さいことに着目し、塩酸塩-塩酸酸混合溶液で溶液を試み図3のような結果を得た。ただし溶液液を加える前に樹脂柱中の塩素を除くため、1 mol/l の塩酸溶液で洗った。

図から見られるように、初めの 10 ml 中に約 95～99％のタリウムが見いただされ、約 20～40 ml も吸収量は定量的に吸着される。なお溶液液として塩酸溶液アルミニウム、ウオハ化水素酸などを試みたが、良好結果はえられなかった。また前後偏べたように樹脂に吸着されたタリウム（II）は塩酸あるいは塩酸溶液では塩酸酸ににくいが、樹脂を塩酸下で洗った場合には 20 ml ほどで全量の約 70% が流出した。塩酸、塩酸溶液で溶液されにくく、蒸留水で容易に流出する点から見れば、クロロアルキル体を分解したために考えると、水を分解して流出してくるものと考えた方が妥当かと考えられる。

タリウムに関しては東京大学原子核研究研究所小林-夫博士の御厚意を賜りました。御尽力を感謝する。

β線後方散乱法による2元合金の定量

（昭和34年11月30日受理）

藤原秀弘・池田重良

β線の後方散乱法はターゲット物質の原子番号によって変化し、このときの後方散乱したβ線の強大飛跡もターゲット物質によって変化する。これらの性質を応用して2元合金中の片方の元素の非凝結分析法の研究を行なった。本稿においては85mSr・90Y 平衡体あるいは 85mP をβ線源として使用し、試料を用いた金屬に標識することにより後方散乱されたβ線のエネルギーをアルミウム吸収板を用いて測定するこの基礎実験を行なって、Al-Cu 合金中の銅およびCu-FW 中のタンゲステンの定量のための準備条件を見いだした。すなわち 85mSr・90Y をβ線源とした場合に、Al-Cu 合金中の銅は試料により後方散乱されたβ線のうち、345 mg/cm² のアルミウム吸収板を通過するものの中のβ線を数計することにより定量できた。また Fe-W 中のタンゲステンは 490 mg/cm² のアルミウム吸収板を通じるもの中のβ線を計数することにより、定量することができた。

1 緒 言

β線の後方散乱法はターゲットの厚さおよびその厚さの増加とともに増加する。この性質は物質の厚みの測定に応用されてきた。また、最大エネルギーが 0.6 MeV 以上のβ線源においては物質による飽和後方散乱値はターゲット自体の厚さの厚さに比例して増加する。このような性質を応用して測定方法は、中性子の源を用いたと同時に測定した、Müllerは物質と後方散乱したβ線のとの関係を理論的に研究した。また後方散乱したβ線の全エネルギーに各成分による因有の後方散乱計数の総和であることはよく知られた事実である。この事実を Alinmarinは化学分析に応用しているがその論文には詳細なデータはみられ

著者らは各種金屬ターゲットを用いた場合のβ線の後方散乱値および後方散乱されたβ線のエネルギーと金属元素との関係を研究し、これを 2 元合金の定量分析に応用し良好な結果を得たので報告する。

2 実験および結果

2.1 設置とβ線源

β線源はβ線のみを放射する放射性同位元素、すなわち 85mSr・90Y