α-ケトプロピオン酸オキシシマト-ビスジリジル-コバルト（III）

過塩素酸塩の光学分割

（昭和36年8月3日受理）

村上 増雄†・妹尾 三郎‡・松里 為行†・板谷 博†・姜 正雄†

α-ケトプロピオン酸オキシシマト-ビスジリジル-コバルト（II）過塩素酸塩を光学分割した。これはジリジルの配位したコバルト錯体では、光学分割された唯一の例である。

\[[\text{Co(phen)}_3]^{2+} \] と \[[\text{phen}]^2^- \] はほぼ等しい。しかしそり [Fe phen]_2^{2+} の \(k_{\text{ex}} \) は、\[[\text{phen}]^2^- \] または [Fe phen]_3^{3+} の \(k_{\text{ex}} \) 、\(k_{\text{dis}} \)を測定して \(k_{\text{ex}} \) の異常に大きな事実から、分子内ラミン化説も提出された。[Co phen]_3^{3+} の \(k_{\text{ex}} \) は Co (II) によるelectron-transfer(6)によって大きくなるという報告もある。しかし \(k_{\text{ex}} \) はあまり大きくはない。\(k_{\text{ex}} \) と \(k_{\text{ex}} \)はかながらも一致するとはかぎらない。[Co phen]_3^{3+} の光学分割に成功しないのは、\(k_{\text{ex}} \) が大きいためとは思えない。

著者らは、α-プロピオン酸オキシシマト-ビスジリジル-コバルト（II）錯体を合成して光学分割に成功した。オキシシのカリウムまたはアラニンの配位したジリジル-コバルト（II）錯体の光学分割に成功した。

2 実験および結果

2.1 旋光度はD線についてはカル・ヴァイス製ポーラリメーター

を用いて測定した。

2.2 ジピリジンの合成

ピリジン (90-70%) で、α-アミノピリジン (11) で、α-プロモピリジン (11) で、α-α'-ジピリジン、を施したが、手数がかかり、全収率20-17%で好ましい合成法ではなかった。

ピリジン (11) ジピリジンの方法が簡単で高収量であった。

2.3

[Co dipyrCH3C(NO- COO)Cl]の合成法は既報した10)。

2.4.1 プロム-カーポスホルン酸塩： 市販プロム-カーポスホルン酸-アノモウム塩 (C6H4OBrSN4) を水から再結晶する。270℃融解。No.38+80.0, [M]d 276°。

アノモウム塩 8.16 g を水 12 ml、エチアルコール 6 ml に加热溶解して、これに硫酸銅 5.0 g を熱水 3 ml に溶かした液を加える。かきまぜると、冷却すると静止7.8 g を得る。白色針状結晶、mp 142°。

酸化を水 6 ml に溶かし、Co dipyrCH3C(NO- COO)Cl・5H2O 1.29 g (1 mol) を水 10 ml に溶かした液を加える。よくかきまぜたのち、遠心分離によって沈殿を除き、

水を減圧で10 mmHg30°〜35℃で乾燥する。収量 1.70 g。

水-アルコール溶液で再結晶、橙色針状結晶、mp 240°〜241°C。

分析値 Co 7.33%, Br 9.94%, H2O 2.44%

[Co(C6H4Ni)2C6H4O2Ni]C6H4OBr・5H2O としての

計算値 Co 7.47%, Br 10.16%, H2O 2.29%

カンファー塩を、水-アルコール溶液およびメチルベンゼンを用いて、分液結晶をとり出しが (11) で、[M]d 34°〜40°。

カンファーモデルの [M]d 276° にもとどと近い。光学分割には失敗した。

2.4.2 α-ケトプロピオン酸オキシマート-ピリジリル-コバルト(III)-ヨウ化物: 上記カーポン-1.2 g をエチアルコール 18 ml に溶かして、ヨウ化カリウム 1.2 g を水 2 ml に溶かした液を加える。混合後、暖めながらよくかきまぜていくと、

結晶が析出する。溶解する時、1.95 g (95%収率)。水 3.5 ml とエチアルコール 10 ml に加温、溶解して放置すると 0.67 g、赤橙色针状結晶を得る。mp 252°C (分解)。

分析値 Co 9.12%, N 10.96%, I 21.11%, H2O 6.44%

[Co(C6H4Ni)2C6H4O2Ni]C6H4OBr・2H2O としての

計算値 Co 9.36%, N 11.62%, I 21.17%, H2O 5.66%

2.5.1 アノモウム硝酸塩: 酒石酸 5.01 g を熱水 35 ml にかとし、これに硫酸銅 2.55 g を水 4 ml にかとした液を加える。

ただちに結晶が析出する。かきまぜたのちよくかきまぜて蒸発する。

酸化を水 30 ml に3回洗う。五酸化リンの入った乾燥器中3日間放置、5.5 g (91%収率)。

分析値 Ag 27.36%

[C2H4O2SbAg] としての計算値 Ag 27.36%

この塩 1.08 g (1 mol) を熱水 50 ml にできるだけ溶かして、オキシマート [Co dipyrC6H4O2Ni]・Cl・5H2O 1.5 g (1 mol) を水 15 ml に溶かした液に加える。はげしく4時間ふりまぜる。塩化銅の沈殿を一過通過。さらに 0.5 g の銀塩を水で液に加えて1時間ふりまぜる2度めに加えた銀塩はほとんど回収される。

ソーダを加えて水 60 ml 以下で減圧乾燥して乾燥する。水-エチアルコールの等量混合液 6 ml を加えて、60°Cで加温する。不溶物を一過通過でエチアルコールで洗う。オキシマート 1 mol で蒸発する。黄褐色針状結晶、0.55 g。液に過剰 (約 30 ml) のエチアルコールを加えると、さらに結晶が析出する。

分析値 N 9.09%

再結晶をいき 1度くり返すと、

[Ni][NO]3+282°(1 dm 管、H2O、c=0.17)

分析値 N 9.11%

2.5.2 (++)-α-ケトンプロピオン酸オキシマート-ピリジリル-コバルト(III)-過塩素酸塩: 光学活性のアノモウム硝酸塩 [Co dipyrC6H4O2Ni]・C6H4OBr 0.8 g をエチアルコール 12 ml に溶かし、無水過塩素酸トリウム 0.2 g をエチアルコール 2 ml に溶かした液を加えると、ただちに結晶が析出する。30 分間ふりまぜる。

30分間ふりまぜると、近心分離によって沈殿を除き、

水 2 ml に溶かした液を加える。20 分間ふりまぜて充分に溶かし、

水 6 ml で再結晶をすすめ 0.15 g が得る。この場合の結晶、mp 254°C (分解) 0.23 g (38%収率)。

2.6 ラセミ化速度の測定

α(++)[Co dipyrCH3C(NO- COO)Cl]・CIO4 0.115%水溶液を 2 dm 管に入れて旋光度を測定した。α+0.80°,

α(++)[Co dipyrCH3C(NO- COO)Cl]・CIO4 に 1 mol 酸化を加えて旋光度を測定した。

α+0.76°,

α+0.68°(2 dm 管、H2O, c=1.07)

30°Cの恒温に旋光管をたもち、12 時間にごとに旋光度をそれぞれ測定した。log a

α+0.98°(2 dm 管、H2O, c=0.187)

(1) に示す。

α+0.98°(2 dm 管、H2O, c=0.187)

室温に放置して旋光度を測定して図 1 に示す。
旋光度と時間の関係は簡単な比例関係が成立しない。少なくとも二つの関係が得られた。ラセミ化反応は1次速度定数で表わされるのが、直線が折れ曲がって表わされた。いずれの場合にもラセミ化の初期の段階は非常に速く、速度定数は錯体のイオン濃度の0次、1次、2次式のいずれにも適用できなかった。ラセミ化の速度はある時間を経過して、急に大きくなる。この場合は1次反応式で表わされる。したがって、便宜上ラセミ化速度を1次反応式で表わす (図1)。

\[
\log \frac{a}{a_0} = k_2 t
\]

図1 ラセミ化速度

ラセミ化の初期の過程を \(k_2 \)、後期の過程を \(k_1 \) で表わす。

\[\begin{align*}
\text{[Co dipy2CH}_{3}C-(NO)COO)]ClO_{4} \quad \text{SbO-tart} & : k_2 = 4.8 \times 10^{-5} \text{min}^{-1} \\
\text{[Co dipy2CH}_{3}C-(NO)COO)]ClO_{4} + CH_2COOH & : k_1 = 1.0 \times 10^{-4} \text{min}^{-1}
\end{align*}\]

である。

\[\begin{align*}
\text{[Co dipy2CH}_{3}C-(NO)COO)]ClO_{4} \quad 2.0 \times 10^{-2} \text{mol (水溶液)の場合には、} & : k_2 = 4.4 \times 10^{-5} \text{min}^{-1} \\
\text{[Co dipy2CH}_{3}C-(NO)COO)]ClO_{4} \quad 1.9 \times 10^{-2} \text{mol (水溶液)に} & : k_1 = 1.2 \times 10^{-4} \text{min}^{-1}
\end{align*}\]

である。

\[\begin{align*}
\text{[Co dipy2CH}_{3}C-(NO)COO)]ClO_{4} \quad 8 \times 10^{-3} \text{mol (水溶液)を含む場合} & : k_2 = 1.3 \times 10^{-4} \text{min}^{-1} \\
\text{[Co dipy2CH}_{3}C-(NO)COO)]ClO_{4} \quad 2 \times 10^{-4} \text{mol (水溶液)を含む場合} & : k_1 = 2.9 \times 10^{-5} \text{min}^{-1}
\end{align*}\]

である。

2.7 α-ケトプロピオン酸オキシシアルト-ビスジミルコバルト (III) 過塩素酸の旋光分散

2.8 アミノ酸塩体の分析

グリシン (またはアラニン) -ビスジミルコバルト (II) 塩酸塩 \([\text{Co dipy2NH}_{2}CH_{2}COO)]ClO_{4} \quad \text{[Co dipy2NH}_{2}CH_{2}COO)]ClO_{4}\) のプロム化物の塩は、添加する酸塩およびアミノ酸塩をそれぞれ合体した。いずれも吸収感度を示し、分別結晶を試みたが、光学分析には成功しなかった。

2.9 アミノ酸塩体の旋光度

\[
\text{表 1 } \nu(\pm)[\text{Co dipy2CH}_{3}C-(NO)COO)]ClO_{4} \quad \text{の旋光分散}
\]

\[
\begin{array}{c|c|c|c}
\lambda & \nu & \alpha & [\alpha]^{a} \\
\hline
690.8 & 43.4 & -0.021 & -157 \\
589.3 & 50.9 & (+350) & A \\
579.1 & 51.8 & +0.138 & +1035 \\
546.1 & 54.9 & +0.391 & +1200 \\
491.6 & 61.0 & -0.126 & -945 \\
435.8 & 68.8 & -0.052 & -20 \\
\end{array}
\]

注: A: 前述, [\alpha]^{a}.
B: 2.67 \times 10^{-5}\% 水溶液.
C: 1.5 \times 10^{-3}\% 水溶液.

1 dm 管を用い 18℃ でルドルフ精製過塩素酸電極 Model200S-80 を用いて測定した。

\[
\nu \text{-leucine} \quad \text{ClO}_{4} \alpha = -0.246, \quad [\alpha]^{a} = 93.4^{\circ}(1 \text{dm 管、H}_{2}O, c = 0.22)
\]

\[
\nu \text{-tyrosine} \quad \text{ClO}_{4} \alpha = 0.096, \quad [\alpha]^{a} = 21.9^{\circ}(2 \text{dm 管、H}_{2}O, c = 0.2056%)
\]

3 考察

3.1 トリスジミルコバルトは、正八面体構造であるために (図2) と同様に鏡像関係にある光学異性体がある。鉄 (II), ニッケル錯体 (II) では光学分割が成功しているが、コバルト錯体についてはまだ成功していない。α-ケトプロピオン酸オキシシアルト-ビスジミルコバルト (II) 錯体の構造は、赤外吸収スペクトルによる検討によって確かめられたが、光学異性体と考えられる (図 3)。

\[
\text{α-ケトプロピオン酸オキシシアルト} \quad \text{4配位の場合と異なり、6配位の場合には、二価基を2配位するため非共鳴構造} \quad I \rightarrow II \quad \text{が想定される (図 4)}
\]

\[\begin{align*}
\text{[Co paa]ClO}_{4} \quad \text{および} \quad \text{[Co ena]ClO}_{4} \quad \text{ではそれぞれ32種類および}\]

8 種類の異性体が想像されるが, この場合オキシさらにビピ

図2 トリスジミルコバルトの光学異性体

図3 (Co dipy2CH}_{3}C-(NO)COO)]^{+} \quad \text{の光学異性体}

図4 α-ケトプロピオン酸オキシシアルトの共鳴構造式

16) 柴上, 佐久保, 吉田, 越谷, 姜, 日化 83, 734 (1962) に合成法を記載。
リジルが平面構造をとるために、ただ、2種類の異性体が考えられるにすぎない。

ジスピリジルと類似構造をしたフェチルスロリンの配位したコパルト錯体が光化学分解されているが、著者らはジスピリジルの配位したコパルト錯体の光化学分解に成功した。

3.2

金属錯化合物の旋光度は不斉炭素に基づくそれよりも大きい。表2に示す。

表2 錯体の旋光度の比較

<table>
<thead>
<tr>
<th>錯体</th>
<th>[α]</th>
<th>[M]</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Co en3]Cl2·H2O</td>
<td>+45</td>
<td>+153.6</td>
<td>18</td>
</tr>
<tr>
<td>[Co en2 phen]</td>
<td>-65.0</td>
<td>-497</td>
<td>3</td>
</tr>
<tr>
<td>[Co en2 glyeine]II/2H2O</td>
<td>-105</td>
<td>-544</td>
<td>19</td>
</tr>
<tr>
<td>[Fe dipy3]Br3·6H2O</td>
<td>-520</td>
<td>-4117.8</td>
<td>20</td>
</tr>
<tr>
<td>[Fe dipy3] (ClO4)3</td>
<td>+260</td>
<td>+2400</td>
<td>21</td>
</tr>
<tr>
<td>[Co dipy3 CH3(CNO)COO]ClO4</td>
<td>+350</td>
<td>+2000</td>
<td></td>
</tr>
</tbody>
</table>

3.3

新しく分解された錨体の旋光分散を表1に示したが、この錨体の第1吸収帯は650×10^{-4} sec である。旋光分散曲線を正確に描くことはできないが、第1吸収帯の付近で旋光度は正→負→正に変わており直のコットン効果を示している。

3.4

[Co dipy3 glycine]Cl3 および [Co dipy3 alanine]Cl3 は吸湿性粉体であるために取り扱いが困難であった。これらの光化学分割には失敗した。L-チロシンおよびL-ロイシンを含むコパルト錨体を合成して旋光度を測定したが、光化学分割されるオキシム錨体に一覧して旋光度が小さい。

3.5

最近、動力学的研究によって、交換反応速度、解離速度をラセミ化速度との関係が解明されるようになった(表3)。[Ni phen] (NO3)2 は kMeN-NMe2 との関係がゲ体、同じ値を示すために交換反応、解離反応、ラセミ化反応も同じ機構で進むものと考察された。

新しく合成された錨体の解離速度や交換速度が測定されていないが、ラセミ化の1次定数は、類似の錨、ニッケル錨体と近似した値を示す。表3に要約している。

[Co dipy3]Cl3 は一般法によって合成された場合の交換反応速度の半減期は150〜200 分である。交換反応速度は2値のコパルトイオンによって促進され、2次反応速度で示される。実際、磁気共鳴の測定により、試料には数ーセントの2値コパルトイオンの存在が確認された。

新しく合成した錨体のラセミ化速度は、初期の50〜100時間間は非常に遅い。そして0次、1次、2次反応式のいずれも決定でき難い。初期の速度は練練性ほど遅い。ある時間を経過するとラセミ化速度は大となり、1次反応速度を示すようになる。この場合1mol の酢酸を混入させると速度が2倍以上増大する事実から、おそらく錨体の解離に基づくものと思われる。便宜上反応速度を1次速度定数で示した。

3.3の電子移動に基づくラセミ化反応に起因すると推定することもできるが今後は残された課題である。

(1959年4月、日本化学会第12年会講演)

<table>
<thead>
<tr>
<th>錨体</th>
<th>kMeN(min^{-1})</th>
<th>kMeN(min^{-1})</th>
<th>kMeN(min^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ni phen]^{2+}</td>
<td>4.7×10^{-4} (24.5°)</td>
<td>9.5×10^{-4} (24.5°)</td>
<td>4.9×10^{-4} (24.5°)</td>
</tr>
<tr>
<td>[Ni dipy3]^{2+}</td>
<td>1.4×10^{-4} (25°)</td>
<td>9.1×10^{-4} (25°)</td>
<td>1.4×10^{-4} (25°)</td>
</tr>
<tr>
<td>[Fe phen]^{2+}</td>
<td>4.5×10^{-4} (25°)</td>
<td>4.5×10^{-4} (25°)</td>
<td>3.6×10^{-4} (25°)</td>
</tr>
<tr>
<td>[Fe dipy3]^{2+}</td>
<td>7.3×10^{-4} (25°)</td>
<td>1.2×10^{-4} (30°)</td>
<td></td>
</tr>
</tbody>
</table>

18) A. Werner, Ber. 44, 124 (1912); J. Mathieu, J. chim. phys. 31, - ... (1936).
20) A. Werner, Ber. 45, 433 (1912).