3.6 融解潜熱の測定

さきにナフタリンを試料として実験を行なったが、さらに尿素および安息香酸についても測定した。この場合も図6に示すようにナフタリンと同様の傾向が認められた。ポトム法を用いると融解のピーク面積と試料量との間にのある比例関係が認められたが、試料に比較してアルミノの量が多い場合には試料量の物理的性質があまり変化しないので融解潜熱の異なる物質間でも、その融解の際の熱量変化とピーク面積との間に近似的な比例関係が成立するものとと思われる。そこで安息香酸の融解潜熱4.14 kcal/mol を基準にしてナフタリンおよび尿素の融解潜熱を比面積から計算した。その結果を表3に示すが、表から明らかのように、ナフタリンおよび尿素の融解潜熱の測定値は文献値によく一致した。

<table>
<thead>
<tr>
<th>稠点（mm²/mol）</th>
<th>融解潜熱（kcal/mol）</th>
<th>計算値</th>
<th>文献値</th>
</tr>
</thead>
<tbody>
<tr>
<td>安息香酸</td>
<td>12.78</td>
<td>4.14</td>
<td>4.14</td>
</tr>
<tr>
<td>ナフタリン</td>
<td>13.05</td>
<td>4.44</td>
<td>4.49</td>
</tr>
<tr>
<td>尿素</td>
<td>19.87</td>
<td>3.17</td>
<td>3.6</td>
</tr>
</tbody>
</table>

注 a）日本化学会編 “化学便覧” 丸善 (1958) p.708.

た値が得られた。このことから異なった物質間でも融解の際の熱量変化とピーク面積との間に比例関係を示すことが推測される。

以上の結果から、熱伝導率より白金製試料セルを用いる場合には、試料を直接セルの底に入れる上途中中性物質でよいが、十円法により微量の有機化合物の融解温度および融解潜熱を簡便に求め得ることが明らかである。

なお本研究を行なうにあたり、終始御懇願いただきたい北原英起氏に感謝します。

(1963年4月、日本化学会第16年会講演)

5-シアノトロポロン鉄キレートの安定度

(昭和39年7月14日受理)

岡 好 良・山 本 勝 巳

5-シアノトロポロン-鉄(III)キレート(1:1)について検討した。温度を25.0±0.1℃、イオン強度を2.00としたとき、5-シアノトロポロンの酸解離定数は1.9×10^-4を、1:1鉄(III)キレートの安定定数は3.7×10^-7を得た。これらの値は前に報告したトロポロン-5置換体について得られたlog K_c 对 pH_c の直線のに."
された吸収曲線を図1に示した。曲線Iは過塩素酸で 0.10~3.0Nとしたときに得られた吸収曲線である。この吸収曲線は吸収度を示し、変化は認められなかった。pHを7.0とした場合には曲線Iを与える。pHをさらに上げて9.2としても変化は認められなかった。したがって曲線Iは解離しない。5-シアノトロボロンの示す吸収曲線、IIはトロボロン酸15Nの示す吸収曲線と考えられる。

他方過塩素酸を加えて、酸性を3N以上すると近紫外部の吸収帯は短波長側に移行し、8Nでは曲線IIに示した吸収曲線が得られた。ジオキシトロピウムイオンの生成を示すものと考えられる。

なお未解離型の示す吸収曲線IIはクロル、プロム、イソプロピルあるいはスルホン酸置換体の吸収曲線とは大分異なり、5-ニトロトロボロンの吸収曲線と類似しているが、5-ニトロトロボロンは溶解度が低いために、解離型においてもほぼ同様な傾向が見られた。

2.3 5-シアノトロボロンの酸解離定数

つぎに[34]と同様にして酸解離定数を求めた。

いき試薬の全溶度を a mol/1、測定波長における全吸光度を A、未解離および解離した試薬のモル吸光係数をそれぞれ εαおよび εd、酸解離定数を Kαとすれば、吸光度と水素イオン濃度との関係は(1)式の関係が成立する。ただし A' = aεd とした。

\[
\frac{A}{A'} = \frac{1}{(s-εd)} + \frac{1}{(s-εd)Kα} \cdot [\text{H}^+] \quad (1)
\]

試薬の濃度を一定にし、pH を 3.06 から 3.90 に変化させて各波長における吸光度を測定して(1)式の a/(A-A')と [H+]との関係を求めると図2に示した直線関係が得られた。ただし温度は20.0±0.1℃にため、既報[34]と同様、平衡定数を求めるときの必要からイオン強度は過塩素酸ナトリウムを用いて 2.00にした。

各直線の傾斜と截点から解離定数 Kαを求めると表1に示した結果が得られた。

表1 5-シアノトロボロンの酸解離定数

<table>
<thead>
<tr>
<th>波長(μm)</th>
<th>Kα</th>
<th>Kα(平均値)</th>
</tr>
</thead>
<tbody>
<tr>
<td>373</td>
<td>1.9×10⁻⁴</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>1.8×10⁻⁴</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1.9×10⁻⁴</td>
<td>1.9×10⁻⁴</td>
</tr>
</tbody>
</table>

表1に示されるようにトロボロンの酸解離定数 3.8×10⁻⁷をくくって、シアン基のかなり大きな電子吸収のため、5-シアノトロボロンの酸解離定数はかなり大きくなっている。

2.4 鉄(III)-5-シアノトロボロンキレートの吸収曲線

5-シアノトロボロンに対して[27]に述べたとき酸性領域では 水溶性の黄緑色のキレートをえた。過塩素酸の濃度を 0.2N としたときの 黄緑色キレートの吸収曲線を図3の曲線Iに示した。
にあげた。鉄の濃度をさらに増しても吸収曲線には変化が認められなかった。したがって試薬は完全に鉄と対応していると考えられる。曲線Ⅰに 2.02×10^{-4} mol/l の過塩素酸鉄 (III) の吸収曲線を示した。

2.5 1:1 鉄 (III)-5-シアノトロピロンキレートの安定度

つぎに緑黄色キレートの組成と安定度定数を求める方法を同様にして求めた。すなわち鉄と試薬を等量加え、その濃度を a mol/l とし、過塩素酸で顕色度を 0.949N から 1.661N まで変化させたときの測定結果における全光度を A、キレートのモル吸光係数を a、平衡定数を K とすると試薬および鉄(III)イオンの吸収の無視できる波長範囲では (2) 式の関係がなり立つ。ただしイオン強度は過塩素酸ナトリウムを加えて 2.00 とし、吸光度は溶液の温度を 25.0±0.1℃にわたって測定した。

\[
\frac{a}{A} = 1 + \left(\frac{1}{k} \right)^{1/2} \cdot \left(\frac{[H^+] \cdot A}{a} \right)^{1/2} \tag{2}
\]

a/A と (H^+)/A^{1/2} との関係を示すと図 4 の結果を得る。

図の直線の傾斜を赤外線平衡定数を求める表 2 のようになる。

この平衡定数の平均値をさきに求めた試薬の酸解離定数から安定度定数 h を求めると 3.4×10^{6} の値が得られた。

表 2 平衡定数 (K)

<table>
<thead>
<tr>
<th>波長 (mμ)</th>
<th>K (平均値)</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>6.2×10^{3}</td>
</tr>
<tr>
<td>440</td>
<td>6.4×10^{3}</td>
</tr>
<tr>
<td>480</td>
<td>6.5×10^{3}</td>
</tr>
</tbody>
</table>

図 4 a/A と (H^+)/A^{1/2} との関係

2.6 トロピロン-5 置換体の酸解離定数 1:1 鉄 (III) キレートの安定度

配位子の種としての強さとキレートの安定度との関係については、Calvinらが指摘して以来多くの研究があり置換基の効果も論じられている。

ここに得られたトロピロン-5 置換体の鉄 (III) キレート (1:1) についてさらに報告したものを図示すると図 5 のようになる。

ただし 5-イソプロピルトロピロンキレートについては、ジオキサソリトロピロンイオンの生成を考え、計算しなかったが、値を示した。図に見られるようにトロピロンおよびその誘導体 6 種については pK_a と log h が良い直線性を示した。このさい置換基は 5 位にあるので鉄 (III) とキレートするとき立体的にはなんら影響しないと考えられる。したがって安定度定数の変化は配位子の酸としての強さと直接関係していると見られる。

電子放出性のイソプロピル基を導入した場合には酸解離定数は化合物のトロピロンの 3.8×10^{-7} から 1.4×10^{-7} と小さくなり、クロルブロム、スルホン酸基、サツアあるいはエトオ基などの電子吸収基の置換基を導入した場合は酸解離定数は大となった。その結果は Hammett の置換基定数の大小と一致している。これらの事実は光度法における発色剤として有機試薬を塗る場合重要な指針を与えるものと考えられる。

本研究に用いた 5-シアノトロピロンは当教室野舘鉄男教授から恵贈されたものである。野舘教授ならびに同研究室の方々に深く感謝を表する。

また使用した日本製 EPS-2 型自記分光光度計は東洋レーザー化学工業株式会社の研究助成金で購入したものである。同社に厚く感謝する。なお研究費の一部は文部省科学研究費によった。あわせて謝意を表する。

(1964 年 3 月、日本化学会第 17 年会講演)

6) 国語, 考察, 日化 45, No. 12(1964) 掲載。