に洗い出されると考えられる。しかしこの地域には高濃度の塩水が貯存しているので、逆に濃縮されるような結果になるのである。この地域に塩水の貯存しているという点から、岩質塩素含量の関係が気象条件の場と異なることがある。すなわち東海、沿岸部では塩度高さの塩水和塩素含量は大差ないものが多く、新埼地区の塩水の塩素含量が、塩水と2次的に接触することによって増している部分が少というのが推定できる。

つぎに試料を人工塩水と10日間接触させたのも、脱イオン水で3回洗浄し、これを365rpmで圧縮分離して得られた最上層部、下層部の塩素含量について実験を行なった（表2）。この実験においては、塩水層について、下層部と一緒に洗浄した塩素含量が塩水濃度に比例し、粒度の小さい最上層部に異なっている傾向が得られた。この実験結果は2次的に吸着される塩素含量が吸着表面面積の大小で比するといえる前報の結果と異っている。

塩素含量の変動については、図2A、Bに示したとおりである。

表2 人工塩水と接触させた試料の塩素含量

<table>
<thead>
<tr>
<th>試料番号</th>
<th>岩質</th>
<th>原試料の全塩素量（%）</th>
<th>露後の表面</th>
<th>露後の下層</th>
</tr>
</thead>
<tbody>
<tr>
<td>岩田-7a</td>
<td>砂岩</td>
<td>0.115</td>
<td>0.088</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>0.112</td>
<td>0.058</td>
<td>0.052</td>
</tr>
<tr>
<td>坂町-2a</td>
<td>砂質泥岩</td>
<td>0.190</td>
<td>0.058</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>0.090</td>
<td>0.069</td>
<td></td>
</tr>
</tbody>
</table>

注：a) (18gCl/L)塩水と接触させた試料、b) (36gCl/L)塩水と接触させた試料。

東京都内河川水の銅含量

野口喜三雄・西戸井敏夫

東京都内河川水の銅含量の変動はほとんどが25〜160μg/Lであるが、まれには1000μg/L以上の地点がある（平井橋、入間川、鷲橋など）。河川水をみると、鷲橋川、新川川、尾間川、多摩川、北足立川など各工場雨地帯を流れる河川では銅含量が大きく、多摩川、江戸川および飲用を販売する河川では比較的小さい。また鷲橋川、新川川の銅含量の変動は工場雨地帯においていちろしきった。

本調査によれば、特に汚染変化を行なった他の地域との関係を検討すると、汚染がいちじるしいと考えられる河川においては、銅イオン含量が銅量と正の相関を示した。

東京都内河川水の銅含量は汚染源による影響が大きい。

1 緒 言

各種産業の発達、人口の増加の集中によりもたらされる廃水は、浄化施設の不備とあいまって河川をたおしにくし汚染し、目を余るものがある。この問題は環境衛生の観点からきわめて重大であり、また河川および海水に拡散する生物への大きな影響をも及ぼしている。ことに銅イオンの魚介類にたいする毒性は、著者等、赤葉らにより報告されているようにきわめて大きいため、がつして東京都内河川水の銅含量の実態を明らかにし、問題の検討資料とすることは意味あることと考える。

河川の水質はつねに変動しており、ある一定時期の水質がその河川の水質を代表する場合は少ない。ことに東京都内河川のように、1日のうちでも時間によって水質が変化する河川についてその変化は正確確実には困難である。したがって現状の問題として、その水質を把握するためには、水質の変動の少ない時期におけ る
よび期間を選び調査することが妥当と考える。
昭和 32 年に第 1 回目の多摩川河川污染調査を行なった。
引きつづき昭和 33 年 8 月には、その調査地域を拡大して、江戸川、中川、荒川、新河岸川、隅田川、多摩川その他の主要河川を含む第 2 回目の河川污染調査を行なった。また同時に各河川
排水場、元宿排水場はもと多摩川内各所の排水場で採水し、これら採水点の総計は 128 番所であった。採水点の位置は図 1 および表 1 に示す。本調査は昭和 33 年 8 月 1 日から 9 月までに上、水
上の調査点にわかれて行なった。この期間にはほとんど降雨はなかった。
またこの調査に関して、昭和 33 年 10 月から昭和 34 年 2
月まで毎月 1 回神田川 6 地点（井の頭公園の池**、天神橋、長者
橋、高戸橋、お茶の水橋、浅草橋）および新川岸川 4 地点（総丸橋、
志村橋、浮間橋、志茂橋）で採水し、河川の水質の月変化を検討
した***。

2 分 析 法

2.1 採 水
試水は原則として河川の中央部より水を採取した。鍋について
は試水を研究室へ持ち帰り、定量を行なった。

2.2 銅の定量法
ジチゾン-四塩化炭素溶液による溶媒抽出滴定法で銅を定量し

図中の数字は採水番号を表わす（表 1 参照）

図 1 採水点および銅分布図

3) 野口，“東京都内河川の汚染調査（其の 1）” 東京都（1957）.
4) 野口，“東京都内河川の汚染調査（其の 2）” 東京都（1958）。
5) 杉村，日本工業用水協会誌 20，26（1961）。
*1 これらの位置は図 1 および表 1 参照。
6) 野口，“昭和 33 年度河川及びふ頭水質汚染防止のための調査報告（神田川及び
新川岸川）” 東京都（1958）。
7) 杉村，日本工業用水協会誌 41，22（1952）。

Cu 浴
○ < 30
△ 31 〜 100
■ 101 〜 300
□ 301 〜 500
△ 501 〜 1000
△ 1001
<table>
<thead>
<tr>
<th>採水地点</th>
<th>水温 (°C)</th>
<th>pH</th>
<th>Cu (μg/l)</th>
<th>採水地点</th>
<th>水温 (°C)</th>
<th>pH</th>
<th>Cu (μg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>新河岸川</td>
<td>31.2</td>
<td>6.6</td>
<td>47</td>
<td>伊藤谷橋</td>
<td>28.5</td>
<td>6.7</td>
<td>71</td>
</tr>
<tr>
<td>澤丸橋</td>
<td>32.0</td>
<td>6.1</td>
<td>80</td>
<td>小松川小橋</td>
<td>26.3</td>
<td>6.6</td>
<td>59</td>
</tr>
<tr>
<td>萱村橋</td>
<td>31.1</td>
<td>5.6</td>
<td>192</td>
<td>木田橋</td>
<td>26.2</td>
<td>6.6</td>
<td>120</td>
</tr>
<tr>
<td>浮間橋</td>
<td>29.4</td>
<td>6.4</td>
<td>122</td>
<td>伊藤谷橋</td>
<td>28.5</td>
<td>6.7</td>
<td>71</td>
</tr>
<tr>
<td>紫羽橋</td>
<td>34.9</td>
<td>7.1</td>
<td>30</td>
<td>江北橋</td>
<td>31.7</td>
<td>7.0</td>
<td>17</td>
</tr>
<tr>
<td>鎮水門</td>
<td>34.1</td>
<td>7.0</td>
<td>86</td>
<td>四新井橋</td>
<td>31.0</td>
<td>6.8</td>
<td>52</td>
</tr>
<tr>
<td>鳥取川</td>
<td>31.6</td>
<td>6.6</td>
<td>120</td>
<td>平佐新橋</td>
<td>31.0</td>
<td>6.9</td>
<td>44</td>
</tr>
<tr>
<td>新河岸川合流</td>
<td>30.3</td>
<td>6.5</td>
<td>79</td>
<td>伊藤切橋</td>
<td>31.2</td>
<td>6.9</td>
<td>51</td>
</tr>
<tr>
<td>新川橋</td>
<td>34.1</td>
<td>6.3</td>
<td>105</td>
<td>千松川橋</td>
<td>30.7</td>
<td>6.8</td>
<td>42</td>
</tr>
<tr>
<td>長谷川</td>
<td>33.3</td>
<td>6.4</td>
<td>340</td>
<td>四ツ木橋</td>
<td>31.7</td>
<td>6.8</td>
<td>101</td>
</tr>
<tr>
<td>千住大橋</td>
<td>31.6</td>
<td>6.6</td>
<td>120</td>
<td>喫西橋</td>
<td>30.8</td>
<td>6.8</td>
<td>43</td>
</tr>
<tr>
<td>白鶴橋</td>
<td>31.2</td>
<td>6.6</td>
<td>155</td>
<td>(北)大橋</td>
<td>32.5</td>
<td>6.8</td>
<td>101</td>
</tr>
<tr>
<td>舟橋</td>
<td>31.5</td>
<td>6.7</td>
<td>1300</td>
<td>福神橋</td>
<td>32.5</td>
<td>6.8</td>
<td>101</td>
</tr>
<tr>
<td>永代橋</td>
<td>29.0</td>
<td>6.8</td>
<td>120</td>
<td>(旧)中川</td>
<td>33.0</td>
<td>6.8</td>
<td>101</td>
</tr>
<tr>
<td>豊関橋</td>
<td>29.0</td>
<td>7.0</td>
<td>95</td>
<td>平井橋</td>
<td>27.4</td>
<td>6.8</td>
<td>3300</td>
</tr>
<tr>
<td>石狩川</td>
<td>34.8</td>
<td>6.9</td>
<td><10</td>
<td>沼戸川</td>
<td>32.8</td>
<td>6.9</td>
<td>230</td>
</tr>
<tr>
<td>神作川</td>
<td>31.5</td>
<td>7.1</td>
<td>10</td>
<td>上北沢</td>
<td>32.0</td>
<td>6.7</td>
<td>29</td>
</tr>
<tr>
<td>黒川</td>
<td>30.7</td>
<td>6.8</td>
<td>45</td>
<td>梅ケ丘</td>
<td>30.4</td>
<td>6.9</td>
<td>18</td>
</tr>
<tr>
<td>桃園橋</td>
<td>29.6</td>
<td>6.8</td>
<td>325</td>
<td>島山</td>
<td>32.5</td>
<td>6.4</td>
<td>160</td>
</tr>
<tr>
<td>華山寺</td>
<td>30.8</td>
<td>6.6</td>
<td>50</td>
<td>練り</td>
<td>29.8</td>
<td>6.7</td>
<td>40</td>
</tr>
<tr>
<td>敦賀寺</td>
<td>32.1</td>
<td>6.8</td>
<td>12</td>
<td>花山</td>
<td>32.5</td>
<td>6.7</td>
<td>400</td>
</tr>
<tr>
<td>向川</td>
<td>32.9</td>
<td>6.6</td>
<td>20</td>
<td>(仙川)</td>
<td>32.5</td>
<td>6.7</td>
<td>400</td>
</tr>
<tr>
<td>三ツ橋</td>
<td>30.8</td>
<td>6.4</td>
<td><10</td>
<td>長門川</td>
<td>30.6</td>
<td>6.4</td>
<td>42</td>
</tr>
<tr>
<td>長者橋</td>
<td>30.2</td>
<td>6.8</td>
<td>84</td>
<td>(入間川)</td>
<td>27.6</td>
<td>6.7</td>
<td>35</td>
</tr>
<tr>
<td>高戸橋</td>
<td>29.6</td>
<td>6.7</td>
<td>72</td>
<td>都道332号下</td>
<td>33.4</td>
<td>7.2</td>
<td><10</td>
</tr>
<tr>
<td>田中橋</td>
<td>29.2</td>
<td>6.7</td>
<td>220</td>
<td>都道300号下</td>
<td>32.6</td>
<td>6.6</td>
<td>18</td>
</tr>
<tr>
<td>水戸橋</td>
<td>31.0</td>
<td>6.7</td>
<td>820</td>
<td>(野川)</td>
<td>33.4</td>
<td>6.8</td>
<td>12</td>
</tr>
<tr>
<td>浅草橋</td>
<td>30.0</td>
<td>6.8</td>
<td>87</td>
<td>(淀川)</td>
<td>32.2</td>
<td>6.8</td>
<td>2900</td>
</tr>
<tr>
<td>神田橋</td>
<td>32.0</td>
<td>6.8</td>
<td>48</td>
<td>入間川</td>
<td>31.2</td>
<td>6.7</td>
<td>400</td>
</tr>
<tr>
<td>(伏見川)</td>
<td>32.0</td>
<td>7.2</td>
<td>87</td>
<td>(伏見川)</td>
<td>32.1</td>
<td>6.7</td>
<td>35</td>
</tr>
<tr>
<td>瑞泉橋</td>
<td>31.5</td>
<td>7.0</td>
<td>130</td>
<td>大森1丁目</td>
<td>32.3</td>
<td>6.9</td>
<td>52</td>
</tr>
<tr>
<td>湯島橋</td>
<td>31.2</td>
<td>7.0</td>
<td>210</td>
<td>(呂川)</td>
<td>33.9</td>
<td>8.4</td>
<td>36</td>
</tr>
<tr>
<td>江戸川</td>
<td>31.5</td>
<td>7.0</td>
<td>130</td>
<td>(大師川)</td>
<td>43.5</td>
<td>7.1</td>
<td>77</td>
</tr>
<tr>
<td>藤倉橋</td>
<td>33.0</td>
<td>6.9</td>
<td>29</td>
<td>丹野川線下</td>
<td>30.7</td>
<td>6.9</td>
<td>32</td>
</tr>
<tr>
<td>市川橋</td>
<td>32.5</td>
<td>6.8</td>
<td>41</td>
<td>須賀川线上</td>
<td>30.9</td>
<td>6.7</td>
<td>50</td>
</tr>
<tr>
<td>美濃水門</td>
<td>32.0</td>
<td>6.7</td>
<td>35</td>
<td>高崎川</td>
<td>31.5</td>
<td>6.9</td>
<td>71</td>
</tr>
<tr>
<td>今井橋</td>
<td>30.0</td>
<td>6.7</td>
<td>67</td>
<td>澤見橋</td>
<td>31.8</td>
<td>7.8</td>
<td>144</td>
</tr>
<tr>
<td>須安橋</td>
<td>29.6</td>
<td>6.7</td>
<td>32</td>
<td>(海老取川)</td>
<td>32.1</td>
<td>7.4</td>
<td>15</td>
</tr>
<tr>
<td>飯塚橋</td>
<td>27.1</td>
<td>6.7</td>
<td>42</td>
<td>(多摩川)</td>
<td>31.1</td>
<td>7.2</td>
<td><10</td>
</tr>
<tr>
<td>高砂橋</td>
<td>25.0</td>
<td>6.6</td>
<td>72</td>
<td>多摩川原橋</td>
<td>31.1</td>
<td>7.2</td>
<td><10</td>
</tr>
<tr>
<td>内匠橋</td>
<td>28.2</td>
<td>6.8</td>
<td>76</td>
<td>多摩水道橋</td>
<td>30.5</td>
<td>7.0</td>
<td>12</td>
</tr>
</tbody>
</table>
表 1 (つづき)

<table>
<thead>
<tr>
<th>採水地点</th>
<th>水温（℃）</th>
<th>pH</th>
<th>Cu（μg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>(多摩川)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>二子橋</td>
<td>27.5</td>
<td>6.9</td>
<td>16</td>
</tr>
<tr>
<td>丸子橋</td>
<td>34.8</td>
<td>7.3</td>
<td>90</td>
</tr>
<tr>
<td>てんか橋</td>
<td>35.7</td>
<td>7.3</td>
<td>12</td>
</tr>
<tr>
<td>六郷橋</td>
<td>34.8</td>
<td>7.0</td>
<td><10</td>
</tr>
<tr>
<td>大原橋</td>
<td>32.6</td>
<td>7.4</td>
<td><10</td>
</tr>
<tr>
<td>六郷用水合流</td>
<td>33.0</td>
<td>7.1</td>
<td>24</td>
</tr>
<tr>
<td>(北十間川)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大橋川合流</td>
<td>32.1</td>
<td>6.6</td>
<td>131</td>
</tr>
<tr>
<td>壁川合流</td>
<td>32.1</td>
<td>6.9</td>
<td>227</td>
</tr>
<tr>
<td>大川橋</td>
<td>24.3</td>
<td>6.7</td>
<td>215</td>
</tr>
<tr>
<td>(甲府川)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>矢沢川合流</td>
<td>25.6</td>
<td>7.0</td>
<td>49</td>
</tr>
<tr>
<td>横瀬橋</td>
<td>36.1</td>
<td>7.0</td>
<td>47</td>
</tr>
<tr>
<td>(矢沢川)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>矢沢川合流</td>
<td>27.9</td>
<td>7.0</td>
<td>40</td>
</tr>
<tr>
<td>甲府川合流</td>
<td>33.6</td>
<td>6.9</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>採水地点</th>
<th>水温（℃）</th>
<th>pH</th>
<th>Cu（μg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>(築地川)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>31.2</td>
<td>6.9</td>
<td>87</td>
</tr>
<tr>
<td>112</td>
<td>25.3</td>
<td>6.8</td>
<td>80</td>
</tr>
<tr>
<td>113</td>
<td>25.8</td>
<td>6.9</td>
<td>76</td>
</tr>
<tr>
<td>114</td>
<td>26.7</td>
<td>6.6</td>
<td>49</td>
</tr>
<tr>
<td>115</td>
<td>25.4</td>
<td>7.0</td>
<td>59</td>
</tr>
<tr>
<td>116</td>
<td>29.5</td>
<td>6.6</td>
<td>140</td>
</tr>
<tr>
<td>117</td>
<td>28.8</td>
<td>6.7</td>
<td>59</td>
</tr>
<tr>
<td>118</td>
<td>25.5</td>
<td>6.6</td>
<td>118</td>
</tr>
<tr>
<td>(掛水場)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>30.2</td>
<td>6.6</td>
<td>230</td>
</tr>
<tr>
<td>120</td>
<td>29.1</td>
<td>6.5</td>
<td>154</td>
</tr>
<tr>
<td>121</td>
<td>29.5</td>
<td>6.7</td>
<td>17</td>
</tr>
<tr>
<td>122</td>
<td>28.1</td>
<td>6.6</td>
<td>170</td>
</tr>
<tr>
<td>123</td>
<td>28.0</td>
<td>6.6</td>
<td>260</td>
</tr>
<tr>
<td>124</td>
<td>30.7</td>
<td>6.4</td>
<td>100</td>
</tr>
<tr>
<td>125</td>
<td>26.8</td>
<td>9.4</td>
<td>260</td>
</tr>
<tr>
<td>126</td>
<td>23.8</td>
<td>5.8</td>
<td>190</td>
</tr>
<tr>
<td>127</td>
<td>24.5</td>
<td>6.6</td>
<td>1300</td>
</tr>
<tr>
<td>128</td>
<td>28.3</td>
<td>6.7</td>
<td>29</td>
</tr>
</tbody>
</table>

表 2 鋼の定量誤差（μg）

<table>
<thead>
<tr>
<th>採水地点</th>
<th>製鋼量</th>
<th>算定値 (μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(浦安)</td>
<td>13.5</td>
<td>13.8</td>
</tr>
<tr>
<td>(関西川)</td>
<td>19.2</td>
<td>14.4</td>
</tr>
<tr>
<td>(関東川)</td>
<td>15.7</td>
<td>16.4</td>
</tr>
<tr>
<td>(逆井川)</td>
<td>22.3</td>
<td>23.0</td>
</tr>
</tbody>
</table>

注 a) 試水の鋼合量＋鋼添加量。

2.4 今後この定量方法により求められる鋼の溶存状態

に述べた決定方法においては、鋼イオンとして存在するものおよび非イ
オニ状で存在する鋼のうち試薬処理の過程で鋼イオンに変化する
ものは定量されるが、錆に不溶の物質中に含まれる鋼は定量さ
れない。しかし河川水の汚染調査の目的にはこの方法で十分であ

ると考える。

3 結 果

3.1 東京都内河川の鋼合量の定量結果を表1に示す。

3.2 神田川、新河岸川に見られる鋼合量の月変化を表3、4に示す。
海水の河川水の希釈に基づくと考えられるが、生に鉄が
硫化物として沈殿したり、懸濁物の表面に吸着されて沈降すること
とも考えられる。

河川別に銅含量を見ると、隅田川がもっとも大きくて100~1300
μg/lであり、既往においても異常に大きく1300μg/lを示したが、
その約5km下流の河口に近い江戸川では95μg/lと減少した。また
新河川の50~200μg/lであった。隅田川、大橋川、北
十間川などの江東地区を流れれる河川ではいずれも銅含量が大き
く、これらの河川の流域には工場密集地域が多い。銅含量の比較
的小さい河川は、東京川10~30μg/l、江戸川30~70μg/l、中
川50~100μg/lであり、その他東京府南部を流れる河川は一
般に銅含量が小さい。主要河川の銅含量の最高値を表4に示す。

表4 東京都内主要河川の銅含量最高値

<table>
<thead>
<tr>
<th>河川名</th>
<th>Cu (μg/l)</th>
<th>河川名</th>
<th>Cu (μg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>新河川</td>
<td>192</td>
<td>江戸川</td>
<td>67</td>
</tr>
<tr>
<td>隅田川</td>
<td>1300</td>
<td>中川</td>
<td>120</td>
</tr>
<tr>
<td>神田川</td>
<td>285</td>
<td>多摩川</td>
<td>101</td>
</tr>
<tr>
<td>琵琶湖</td>
<td>230</td>
<td>六郷川</td>
<td>49</td>
</tr>
</tbody>
</table>

表5 銅含量のヒン度表

<table>
<thead>
<tr>
<th>Cu (μg/l)</th>
<th>ヒン度</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>10</td>
</tr>
<tr>
<td>11~15</td>
<td>8</td>
</tr>
<tr>
<td>16~25</td>
<td>5</td>
</tr>
<tr>
<td>26~40</td>
<td>14</td>
</tr>
<tr>
<td>41~65</td>
<td>25</td>
</tr>
<tr>
<td>66~100</td>
<td>21</td>
</tr>
<tr>
<td>>1000</td>
<td>5</td>
</tr>
</tbody>
</table>

本調査で同時に定量を行なった他の成分との関係を検査すると、
産業廃水による汚染がいちじるしいと考えられる河川において、
図4,5,6,7に示されるように銅含量は硫化イオン含量と正の相
関を示した。これらより東京都内河川の銅汚染は産業廃水に
による影響が大きめである。

神田川、新河川川に見える銅含量の月変化は表2および図2,3で
示される。神田川は上流部の井の頭公園の池ながらに天神橋では
銅含量の大きな変化は見られないが、各種工場の密着した長者橋

（23）野口・西井戸：東京都内河川水の銅含量

図2 隅田川に見られる銅含量の月変化

図3 新河川川に見られる銅含量の月変化

図4 Cu-SO₄相図（隅田川）

図中の番号は採水地点を表す（表1参照）

本表は銅と硫黄の成分、および環境イオン含量/硫黄イオン含量などの差か
ら見て、河川水が流入していると思われる地点は除外した。
以下の表を示す。京浜を途絶けた影響で、
その周辺の産業廃水の放流状態と河川の流量の変化を示す。

表8 東京都内河川水の銅含量ヒストグラム

25～160 μg/l を示し、これには旧中川の平井橋 3300 μg/l、立会川の入道橋 2900 μg/l、隅田川の駅橋 1300 μg/l、小松川排水場
1300 μg/l のように 1000 μg/l 以上を示す地点も存在する。
これをヒストグラムで表すと図5のようになる。今回の調査
による東京都内河川水の銅含量のヒストグラムはほぼ対数正規分布を示
している。

(1960年4月、日本化学会第13年会発表)