5,7-ジプロム-8-オキシシノリンによるスズ(IV)の吸光光度定量
(昭和40年8月2日受理)

松尾 力・船山 和子

5,7-ジプロム-8-オキシシノリン(プロモオキシン)によるスズ(II)の吸光光度定量において、生成する黄色のスズ(II)キレートをイソプロトン酸で抽出した。著者らはこの定量において抽出溶液について既報とともにスズ(II)の定量条件と検体の組成について検討した。また、プロモオキシンの酸分解定数を光度法により測定し、

\[pK_a = 2.3, \quad pK_a = 7.3 \]

を得た。

1 論 説

Ruf(1)はオキシン誘導体の5,7-ジプロム-8-オキシシノリン(プロモオキシン)によるスズ(II)の吸光光度定量において、生成する黄色のスズ(II)キレートをイソプロトン酸で抽出した。

2 実 験

2.1 試薬と測定装置

スズ(IV)標準溶液: 金属スズを精粋し、塩酸酸加熱溶解してから6N塩酸または2N塩酸でうすめて保存した。これを同一の酸で適宜うすめる実験に使用した。

5,7-ジプロム-8-オキシシノリン: 市販品(東京化成株式会社)

測定装置: 吸光光の測定には島津 QB-50型分光光電度計および日立 EPW-4型分光光度計を使用し、セルはガラス製、液層の厚さ1cmのものを用いた。pHの測定には電気機械 M-3型ガラス電極pHメーターを用いた。

2.2 操作方法

標準スズ(II)塩酸溶液の一定量をとり、これと塩酸(または塩酸リトリウム塩酸)を加えて塩酸イオン濃度が0.2N以上になるようにする。この溶液を希アンモニア水でpH 1.0に調節してから分液漏斗に移す(全容 20ml)。0.1% プロモオキシンのアセトン溶液5mlを加えてから、約5分間放置する。これに四塩化炭素を正確に10.0ml加えて1分間ふりまぜてから分層する。有機相の吸光度を405μmの波長で、同じように処理した溶液を対照として測定する。

3 実験結果

3.1 スズ(IV)プロモオキシンの吸収曲線

スズ(II)プロモオキシンの四塩化炭素溶液の吸収曲線を図1 (曲線Ⅰ)に示した。抽出されたスズ(II)キレートは405μmに極大吸収が認められ、試薬の濃度を増しても吸収曲線の形に変化はない。

(1) Tsutomu Matuo, Kazuko Funayama 山形大学工学部

1) Tsutomu Matuo, Kazuko Funayama 山形大学工業化学科

注) スズ濃度: 100μg/25ml 水相, 光電度計で測定(F = 42).

<table>
<thead>
<tr>
<th>表1 水相の比較</th>
</tr>
</thead>
<tbody>
<tr>
<td>水相の種類</td>
</tr>
<tr>
<td>iso-プタノール</td>
</tr>
<tr>
<td>n-プタノール</td>
</tr>
<tr>
<td>クロロホルム</td>
</tr>
<tr>
<td>ベンゼン</td>
</tr>
<tr>
<td>四塩化炭素</td>
</tr>
<tr>
<td>メチルイソプロピルケトン</td>
</tr>
</tbody>
</table>

注) スズ濃度: 100μg/25ml 水相, 光電度計で測定(F = 42).

図1 スズ(II)プロモオキシンの吸収曲線

みられなかった。この波長において、同様に処理したプランク溶液(曲線Ⅰ)の吸収はほとんど認められない。

3.2 抽出溶媒の選択

2.2 の実験で四塩化炭素のほか数種の溶媒を用いてスズ(II)キレートの抽出能を比較してみた。その結果を表1 に示したが、四塩化炭素、クロロホルムおよびペンゼンが適当であることを認めめた。表1 の結果から、抽出のとき下層にくること、揮発性が比較的小さいことから本実験では四塩化炭素を用いることにした。
Ruf(II)の用いたプロセール系溶液はブランク値が大きい。

3.3 スズ(IV)とプロモオキシンとの反応時間

2.2 の実験において、プロモオキシンのアセトン溶液を加えてから抽出するまでの時間を、すなわちキレート生成に要する時間を吸光度の測定値から調べた。その結果を図2に示した。

図2 スズ(IV)とプロモオキシンの反応時間

図2から室温では少なくとも30分以上放置してから抽出することが必要である。

3.4 ふりまぜ時間と呈色の安定性

2.2 の実験において、抽出するときのふりまぜ時間と抽出した呈色溶液の安定性を吸光度の測定値から調べた。抽出のときのふりまぜ時間は30秒以上で吸光度は一定値を示し、呈色溶液の吸光度は60分放置後も一定値を示した。

3.5 塩素イオンおよびその他の共存イオンの影響

2.2 の実験において、標準スズ(IV)硝酸溶液を用いるときには全然吸収が認められない。しかし、スズ(IV)硝酸溶液を用いると吸収が認められるので、塩素イオンとして塩酸を加えて吸光度の変化を調べてみた（塩酸を添加してから8アンモニア水でpHはつねに1.0にたもった）。その結果を表2に示した。

表2 塩素イオンの影響

<table>
<thead>
<tr>
<th>塩素イオン濃度(N)</th>
<th>吸光度</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.000</td>
</tr>
<tr>
<td>0.08</td>
<td>0.020</td>
</tr>
<tr>
<td>0.2</td>
<td>0.590</td>
</tr>
<tr>
<td>0.4</td>
<td>0.590</td>
</tr>
<tr>
<td>0.8</td>
<td>0.590</td>
</tr>
<tr>
<td>0.1</td>
<td>0.590</td>
</tr>
</tbody>
</table>

注) スズ濃度: 145 µg/25 ml 水相, 推定波長 405 mp

表3 共存塩類の影響

<table>
<thead>
<tr>
<th>共存塩</th>
<th>濃度 (mol/l)</th>
<th>添加量 (mol)</th>
<th>吸光度</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NH4)2SO4</td>
<td>1.0</td>
<td>5</td>
<td>0.298</td>
<td></td>
</tr>
<tr>
<td>NH4Cl</td>
<td>1.0</td>
<td>5</td>
<td>0.298</td>
<td></td>
</tr>
<tr>
<td>NH4NO3</td>
<td>1.0</td>
<td>5</td>
<td>0.297</td>
<td></td>
</tr>
<tr>
<td>Ca(NO3)2</td>
<td>0.1</td>
<td>10</td>
<td>0.297</td>
<td></td>
</tr>
<tr>
<td>Mg(NO3)2</td>
<td>0.1</td>
<td>10</td>
<td>0.298</td>
<td></td>
</tr>
<tr>
<td>Zn(NO3)2</td>
<td>0.1</td>
<td>10</td>
<td>0.297</td>
<td></td>
</tr>
<tr>
<td>Ni(NO3)2</td>
<td>0.1</td>
<td>5</td>
<td>0.298</td>
<td></td>
</tr>
<tr>
<td>Mn(NO3)2</td>
<td>0.1</td>
<td>1</td>
<td>0.299</td>
<td></td>
</tr>
<tr>
<td>Al(NO3)3</td>
<td>0.1</td>
<td>2</td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>Co(NO3)2</td>
<td>0.1</td>
<td>2</td>
<td>0.319</td>
<td></td>
</tr>
<tr>
<td>In(NO3)3</td>
<td>0.1</td>
<td>2</td>
<td>0.310</td>
<td></td>
</tr>
<tr>
<td>Pb(NO3)2</td>
<td>0.05</td>
<td>5</td>
<td>0.303</td>
<td></td>
</tr>
<tr>
<td>Mohr 塩</td>
<td>0.01</td>
<td>5</td>
<td>0.302</td>
<td></td>
</tr>
<tr>
<td>(NH4)2SO4</td>
<td>10^-8</td>
<td>1</td>
<td>—</td>
<td>色調が異なる</td>
</tr>
<tr>
<td>Cu(NO3)2</td>
<td>10^-8</td>
<td>1</td>
<td>0.362</td>
<td></td>
</tr>
<tr>
<td>SbCl3</td>
<td>10^-4</td>
<td>1</td>
<td>—</td>
<td>色調が異なる</td>
</tr>
<tr>
<td>Ga(NO3)3</td>
<td>10^-5</td>
<td>1</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

注) スズ濃度: 88 µg/25 ml (吸光度 0.298)。
 光電光度計で測定（F: 42 使用）.

を共存させなければならないことがわかった。また、数種の塩類の影響について調べ、その結果を表3に示した。

表3からアシモニウム(II)、カリウム、鉄(II)、銅の共存はいわんなるし妨害する。スズ(IV)として塩化スズ(IV)塩酸溶液を用いて実験したが呈色は認めなかった。
3.6 検査線および他の方法との比較

2.2 の実験でスズ(Ⅳ)の濃度を10～100 μg の範囲に変化させ，Cl- 濃度を0.2N 以上にしたもの，pH を1.0 に調整してから（全容 25 ml），四塩化炭素で抽出し，（抽出溶液の吸光度を405 μm の波長で測定した。吸光度とスズ(Ⅳ)濃度の関係を図3（直線1）に示した。また，フィルター（F：42）を用いた場合の吸光度とスズ(Ⅳ)濃度との関係を図3（直線1）に示した。いずれも対照液を同一処理した四塩化炭素溶液を用いた。直線1，2ともに原点を通る直線となり Beer の法則を満足する。

スズ(Ⅳ)の吸光光度定量法としてはオキシン2)，フェニルフルオロン3)，スチルバゾール2)コラボノールおよびその誘導体3)，ピロカテーテコールバイオレット4)などが知られている。これらの中でもオキシンとをフェニルフルオロンを除く試薬の場合には一定の pH で発色させて水相の吸光度を測定しているので操作は簡単であるが、また短所もある。たとえば，フェニルフルオロン法では分散剤を添加することが通常とされている。本実験ではオキシン誘導体を用いたので，オキシンとオキシンのフロール誘導体（5,7-ジクロロ-8-オキシン）を用いた場合の結果を比較してみた。オキシンは2%アセトン溶液として用い，クロールオキシンは0.1%アセトン溶液を用いて，2.2 の実験条件にしたがって実験し，検量線を作製した。その結果を図3に併記した（直線ⅠとⅡ）。オキシン法はオキシンに比べて感度が高く、クロールオキシンは本法とのべて同一結果を示した。

3.7 スズ(IV)プロモオキシンの合成

連続変化法によってスズ(Ⅳ)プロモオキシンの組成を調べてみた。その結果を図4に示した。図4 から基準のモル比，スズ(Ⅳ)とプロモオキシンとのモル比は1：2 になる。スズ(Ⅳ)のイオン価が4であることと3.5で実験結果の塩素イオンの存在が必要であるということから抽出されたスズ(Ⅳ)キレートの組成はSnCl₂(BrO₃)₂²⁻と考えられる。Eberle らはスズ(Ⅳ)とオキシンの組成はSnCl₂(O₃)であることを報告している。また，Tolba らは新しいスズ(Ⅳ)オキシン化合物としてSnCl₂(O₃)₂の生成を認め，この溶液を用いてスズ(Ⅳ)の重量定量を試みた。

スズ(Ⅳ)プロモオキシンの組成を確かめるためにつきの実験を試みた。

実験1) スズ(IV)プロモオキシン沈殿の組成：スズ(Ⅳ)溶液に塩酸を加えてCl- 濃度を0.2N 以上になるようにする。この溶液の pH を1.0 に調整後0.1%プロモオキシンのアセトン溶液20 ml を加え，湯浴上で2時間間熟すること。生成した沈殿をガラスフィルターを用いてろ過する。試料の過剰を除くため 3N 塩酸で沈殿を洗い，ついて水洗した。この沈殿を110℃ に2時間乾燥後秤量した。その結果を表4に示した。

4) 石橋, 木下, 田中, 分析化学, 10, 1272 (1961).
5) 関, 田中, 様原, 日化, 81, 1486 (1960); 83, 699 (1962).

*2 BrO₃⁻ プロモオキシンを略記。

図 4 連続変化法によるスズ(Ⅳ)プロモオキシンの組成

<table>
<thead>
<tr>
<th>[BrO₃⁻]</th>
<th>[Sn] + [BrO₃⁻]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10⁻⁴mol/l</td>
<td>2×10⁻⁴mol/l</td>
</tr>
</tbody>
</table>

水相：pH 1.0，全容25 ml
抽出有機溶媒：四塩化炭素 10 ml
測定波長：405 μm

図5 スズ(IV)プロモオキシン沈殿中のスズの含有

表4 スズ(Ⅳ)プロモオキシン沈殿中のスズの含有

<table>
<thead>
<tr>
<th>スズ(Ⅳ)</th>
<th>濃度 (mg)</th>
<th>濃度 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7</td>
<td>65.5</td>
<td>9.8</td>
</tr>
<tr>
<td>4.3</td>
<td>26.1</td>
<td>3.9</td>
</tr>
</tbody>
</table>

注 a) Sn/SnCl₂(C₂H₄ONBr₂)₃ = 0.1496。

スズ(Ⅳ)実験値は定量値とほぼ一致している。

実験2) スズ(IV)プロモオキシン沈殿の塩素の含有：実験1で生成したスズキレートを酸アルカリに溶けにくく，また有機溶媒に難解であるa)。実験1で生成したスズキレートの一定量を10%水酸化アルカリアルコール溶液5 ml を加えてから，室温で1時間よくかき混ぜる。この溶液を硝酸酸性にて Volhard 法により塩素を定量した。その結果を表5に示した。

実験3) スズ(IV)プロモオキシン沈殿中の全ハロゲンの含有：実験1で生成したスズキレートの一定量をn-ブタノール20 ml と加温溶解後金属ナトリウム2 g を加えて1時間還流する。この溶液を硝酸酸性にて煮沸して（同時に生成した CN⁻ を除く）か

表5 スズ(Ⅳ)プロモオキシン沈殿中の塩素の含有

<table>
<thead>
<tr>
<th>Cl⁻ (mg)</th>
<th>計算値</th>
<th>実験値</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.9</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>35.5</td>
<td>3.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

注）AgNO₃：0.0531N。
ら、Volhard 法により Cl+Br の含量を定量した。その結果を表 6 に示した。

表 6 スズ(N)ブロモオキシン沈殿中の含ハロゲンの含量

<table>
<thead>
<tr>
<th>スズキレート 採取量 (mg)</th>
<th>AgNO₃ 所要量 (mℓ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.1</td>
<td>4.06</td>
</tr>
<tr>
<td>18.0</td>
<td>2.17</td>
</tr>
</tbody>
</table>

注) AgNO₃: 0.0531N

実験 2 と 3 の結果は計算値よりやや低い値を示しているが、スズ(N)ブロモオキシンの組成は前述のように SnCl₃(BrOx)₂と考えてよいだろう。

3.8 5,7-ジブロモ-8-オキシンノリの酸解離定数

ブロモオキシンの解離をオキシン(N)と同様に考えると、その解離はつぎのように示される。

\[
\begin{align*}
\text{Br} & \xrightarrow{K_{a1}} \text{Br}^- \\
\text{H₂BrOx} & \xrightarrow{K_{a2}} \text{HBrOx} \\
\text{BrO}^- & \xrightarrow{K_{a3}} \text{BrO}²⁻
\end{align*}
\]

よって酸解離定数 \(K_{a1} \) および \(K_{a2} \) は(1), (2) 式で示される。

\[
\begin{align*}
K_{a1} &= \frac{[\text{HBrOx}][\text{H}^+]}{[\text{H₂BrOx}]} \\
K_{a2} &= \frac{[\text{BrO}^-][\text{H}^+]}{[\text{HBrOx}]}
\end{align*}
\]

Hildebrand の分光度法によりブロモオキシンの酸解離定数の測定を試みた。測定は 20℃で行った。

一定波長における吸光度を \(A \), そのときの分子吸光係数を \(e \), 使用したブロモオキシンの初濃度を \(b \) mol/l とすれば,

\[
\begin{align*}
K_{a1} &= \frac{(b-A/e)[\text{H}^+]}{A/e} = \frac{b}{e} + K_{a2} \\
K_{a2} &= \frac{A/e[\text{H}^+]}{(b-A/e)} = \frac{b}{e} + K_{a1}
\end{align*}
\]

ブロモオキシンの 20% アセトン水溶液の \(\text{pH} \) の異なる溶液をつくり、その吸収曲線を図 5 に示した。使用した溶液溶液は Clark-Lubs[11] の処方にしたがった。図 5 にみられるように \(\text{pH} \) の異なる溶液の吸収曲線の形がそれぞれ異なっている。\(\text{pH} 1.0 \) の溶液ではブロモオキシンは解離して 1 となり、\(\text{pH} 10.0 \) の溶液では 2 となり、\(\text{pH} 5.0 \) の溶液では解離しない分子形 (I) となっていると考えられる。380 mp において、\(\text{pH} 5.0 \) の溶液はほとんど吸収が認められないから (図 5 : 曲線 I), この波長においてブロモオキシン溶液 (b: 6.6 × 10⁻¹⁰ mol/l) の \(\text{pH} \) を 0.4～1.2 の範囲に変化させて、それぞれの溶液の吸収度を測定した。吸収度の値 (A) を (1) 式に代入して、b/A と [H⁺] の関係を図 6 に示した。図 6 にみられるように直線関係 (図 6 : 直線 1) が得られたので、

\[K_{a1} = 5.12 × 10⁻³ \]

この値は基底から \(K_{a1} = 5.12 × 10⁻³ \) を得た。

同様に \(\text{pH} \) を 6.2～7.8 の範囲に変化させて、それぞれの溶液の吸収度を測定し、(2) 式から b/A と [H⁺] の関係を図 6 に示した。

図 6 にみられるように直線関係 (図 6 : 直線 2) が得られたので、この値は基底から \(K_{a2} = 5.64 × 10⁻⁸ \) を得た。

\[b/A = K_{a2} \]

この数値をオキシンおよびそのハロゲン誘導体の酸解離定数の文献値と比較して表 7 に示した。

ブロモオキシンの酸解離定数はオキシンより大きく、クロロオキシンとはほぼ同一値である。

ジエチルシトコアルパミン酸ナトリウムを用いた抽出法による金の吸光光度定量法

昭和40年8月25日受理

小松寿美雄*1・野村俊明*1・小口哲二*2

水酸化アンモニウム-塩化アンモニウム緩衝溶液でpH 8.5-9.5にした金（II）溶液にジエチルシトコアルパミン酸ナトリウムを加えると黄褐色のコロイド状沈殿が生成するので、これをリン酸トリプチル(TBP)で抽出した褐色液の吸光度を波長420mμで測定して金の吸光光度定量法を検討した。沈殿生成は金対ジエチルシトコアルパミン酸ナトリウムはモル比で1:3である。反応10分後に抽出すればよく、抽出前の吸光度は約15%である。TBP 10mlで抽出して金4ngと2570mμ/50mlの濃度範囲でBeerの法則が適用し、分子吸光係数は約6930、誤差は±3%以下である。

1 試験と装置

金（II）試料溶液：市販特級金箔（純度99.99%）を王水に溶かし、熱湯上で加温、乾固して完全に酸を除去したもとに水に溶かして0.1N塩酸溶液とした。この溶液の濃度を重量法で決定した結果、970μg/mlであった。実験に際しては、この溶液を適宜希釈して用いた。

ジエチルシトコアルパミン酸ナトリウム溶液：市販特級品（(DC)Naと略記）をそのまま使用して水に溶かし、1mg/mlのものを調製した。

溶液：市販特級品をそのまま使用した。しかし、リン酸トリプチル（TBP）は特級品が入手できなかったので1級品を使用してみたが、(DC)Na溶液をふりざとるとTBP相がやや褐色に着色した。これはTBP中で(DC)Naと反応する金属イオンが混入しているためと思われたので、減圧蒸留法（沸点は25mm水銀柱で177℃-178℃）で精製して使用した。

その他試薬：特級品ないし1級品を精密に使用してした。

装置：吸光光度測定用には日立FPO2型フィルター光電比色計を使用し、吸収セルは10mm（ガラス製）を使用した。

3 標準操作

金（II）の標準溶液（濃度194μg/ml）5mlを分液漏斗にとり、(DC)Na溶液（濃度 1mg/ml）5mlを加え、0.1mol/l水酸化アンモニウム-0.1mol/l塩化アンモニウム緩衝溶液30mlでpH8.5-9.5に調節したのち、蒸留水で50mlに希釈する。この溶液を約10分間放置したのち、TBP10.0mlを加えて約1分間ふるい、黄褐色沈殿を抽出する。ついで抽出相に無水硫酸ナトリウム約1gを加えて脱水したのち、径10mmの吸収セルに入れ、同様に操作して調製した試験プランク溶液のTBP抽出相を対照として波長420mμにおける吸光度を測定する。

4 結果と考察

4.1 金と(DC)Naとの反応状況

金（II）と(DC)Naとの反応状況については、間接的方法であるが中性溶液では定量的に反応することは著者の1人が行った実験結果から明らかである。すなわち、ジエチルシトコアルパミン