表1 亜鉛(II)、カドミウム(II)イオン-アセチルアセトン錯体生成の熱力学諸量
（水-メタノール 1: 1 混合溶媒、イオン強度 0.1、25℃）

<table>
<thead>
<tr>
<th></th>
<th>log (K_1)</th>
<th>log (K_2)</th>
<th>(-\Delta G_1) (kcal/mol)</th>
<th>(-\Delta G_2) (kcal/mol)</th>
<th>(-\Delta H_1) (kcal/mol)</th>
<th>(-\Delta H_2) (kcal/mol)</th>
<th>(S_1) (e.u.)</th>
<th>(S_2) (e.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn²⁺</td>
<td>5.36±0.02</td>
<td>4.49±0.02</td>
<td>7.32±0.02</td>
<td>6.14±0.02</td>
<td>1.32±0.11</td>
<td>1.43±0.8</td>
<td>20±1</td>
<td>16±3</td>
</tr>
<tr>
<td>Cd²⁺</td>
<td>3.59±0.02</td>
<td>2.55±0.02</td>
<td>4.90±0.02</td>
<td>3.48±0.02</td>
<td>0.95±0.02</td>
<td>1.89±1.1</td>
<td>13±1</td>
<td>5±4</td>
</tr>
</tbody>
</table>

注 a）文献10）

がきわめて安定であり11）、Zn²⁺、Cd²⁺との比較が不可能であった。

\(\Delta H \)に関しては、亜鉛、カドミウムともに非常に小さな値である。\(\Delta H_1 \)のみについては、安定度定数の温度変化から得られた値が報告されているが11）（表1参照）、その値ともかなり一致している。2,2'-ビビリルなどのN-ドナー型の金属錯体では\(\Delta H_1 \geq \Delta H_2 \)と報告されているが12）。本研究におけるアセチルアセトナート錯体では\(\Delta H_2 \leq \Delta H_1 \)なる結果を示している。

水を含む溶媒中では、金属イオンに対する水和が\(\Delta H_1 \)および\(\Delta H_2 \)に大きく影響するものと考えられる。ここで得られた\(\Delta H_1 \)と\(\Delta H_2 \)は金属イオンの水和熱と錯体生成熱の差として

いる。ここに，δ₀，δₙ はそれぞれ，高分子および溶媒の solubility parameter である。たとえば，δ₀＝8.2 のシクロヘキサンは
δ₀＝9.3 のポリスチレンの θ 溶媒である。これをもとにポリ（p-
クロロスチレン）（δ₀＝9.7）の θ 溶媒をさがしたが，θ 溶媒として
四塩化炭素（δ₀＝8.6）を見いただすにとどまった。そこで混合溶媒
である四塩化炭素－トルエンを選び，近似的な θ 溶媒とした。

高分子と溶媒の間の相互作用を表す自由エネルギー・パラメー
ター ₓ は，その温度依存性を知ればエントロピー・パラメーター
φ とエネルギー・パラメーター ε に分離できる。ポリスチレ
ンや，ポリメタクリル酸メチルなどについて，溶媒の分子構造
が φ，ε の値に与える影響について細部の議論がなされている。

著者らは固有粘度の温度依存性を求ることにより，これらの
パラメーターをポリ（p－クロロスチレン）と各種の溶媒の間で求
めた。

2 実験

2.1 試料

p－クロロスチレンモノマーの合成は以前の報告にしたがったり。
ポリ（p－クロロスチレン）は，開始剤としてアゾビスイソプロ
ニトリルを用い，温度 60°C，室温腐換下で塊状重合によりつく
った。得られた高分子につき，溶媒としてベンゼン，塩酸剤とし
てメタノールを用い，分別沈殿を行ない 9 個の画分を得た。分子
量は 30°C のトルエン溶媒における粘度式より

\[[\eta] = 5.37 \times 10^{-2} M^{0.71} \quad (1) \]

を用い決定した。表 1 に各画分の分子量を記した。

表 1 (1) 式から求めた分子量

<table>
<thead>
<tr>
<th>画分</th>
<th>[η] (100 cc/g)</th>
<th>M (×10⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.85</td>
<td>452</td>
</tr>
<tr>
<td>2</td>
<td>2.40</td>
<td>355</td>
</tr>
<tr>
<td>3</td>
<td>1.86</td>
<td>248</td>
</tr>
<tr>
<td>4</td>
<td>1.309</td>
<td>151</td>
</tr>
<tr>
<td>5</td>
<td>1.010</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>0.700</td>
<td>62.5</td>
</tr>
<tr>
<td>7</td>
<td>0.479</td>
<td>36.6</td>
</tr>
<tr>
<td>8</td>
<td>0.356</td>
<td>24.1</td>
</tr>
<tr>
<td>9</td>
<td>0.228</td>
<td>12.9</td>
</tr>
</tbody>
</table>

溶媒は通常の方法で精製した。とくに微量の水分は五酸化リ
ン，ナトリウムを用い除いた。

2.2 沈殿点決定

沈殿点決定にあたり，温度の上昇，下降の速度を小にするため，二
重の槽を用いた。その温度は 30～50 秒あたり 0.1°C である。
適当な濃度の溶液をスクラーでゆっくりかきまぜながら，温度
を上げ，下げし，渦の消失，発生を観察したが，沈殿点はその
両方においてほぼ 0.1°C で一致した。

θ 溶媒はつきのようにして求めた。まず単一溶媒，高分子系に
おいては，種々の濃度につき，図 1 のような状態図を書き，臨界
温度 Tₑ を求める。これらの値を次式

\[1/Tₑ = 1/\Theta(1+1/\varphi(1/x₁²+1/2x)) \]

(2)

にしたがい図 2 のように分子量無限大に外拡じて，θ の値が求め
られる。ここに x は重合度である。このとき，塩基と θ の値か
らエントロピー・メタノール装 φ も求められる。また混合溶媒・
高分子系においては，図 3，図 4 のように，種々の濃度における
分子量の平均値に対する沈殿点の直線の切片を濃度 0 に外拡じ
ることにより θ の値が求められる。

求めた θ 温度および φ を表 2 に記した。ここで，混合溶媒の
比率は体積比で表わしている。

2.3 粘度測定

粘度測定には Ubbelohde 型粘度計を用いた。この場合運動エ
ネルギーの補正項は無視できる。溶液は使用前，マグネチックス
クターで 12～15 時間かき混ぜた。
表 2 各溶液中に得られた \(K \) の値と理想配位

<table>
<thead>
<tr>
<th>溶液</th>
<th>(\Theta) (℃)</th>
<th>画分</th>
<th>([\eta])</th>
<th>(K \times 10^9)</th>
<th>((\eta_0/M)^{1/2} \times 10^{11})</th>
<th>((\eta_0/M))^{1/2} \times 10^{11}</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>四塩化炭素</td>
<td>58.9</td>
<td>f 9</td>
<td>0.196</td>
<td>54.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f 8</td>
<td>0.266</td>
<td>54.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi = 0.322)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>四塩化炭素-トルエン (3/2)</td>
<td>32.0</td>
<td>f 9</td>
<td>0.203</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f 8</td>
<td>0.291</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>四塩化炭素-トルエン (1/1)</td>
<td>13.4</td>
<td>f 9</td>
<td>0.211</td>
<td>58.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f 8</td>
<td>0.289</td>
<td>58.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平均</td>
<td></td>
<td></td>
<td>58.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図中の \(C \) は濃度を示す。

図 3 四塩化炭素-トルエン (3/2) 混合系中 のポリ（ \(p \)-クロロスチレン）に対する \(T_p \) と \(M^{-1/2} \) の関係（下図），分子量無限大における沸点と濃度の関係（上図）

固有粘度は、図 5 のように還元粘度と濃度の関係を直線に引き、濃度 0 に外挿して求めた。初濃度は乾燥重量法で求め、溶液はビペットで溶液を直接粘度計に加えて希釈した。

3 結果と考察

無限希薄溶液中における高分子鎖について、排除体積効果により拡がりと、固有粘度の拡がり依存性との関係式は次式で与えられる。

\[
[\eta] = KM^{1/2}a^{2+1/2}
\]

\[
\sigma = a^{2} = 2CM(1 - \Theta/T)M^{1/2}
\]

\[
\sigma = (\eta_{0}/\eta)^{1/2}
\]

\[
K = \Phi(\eta_0/M)^{1/2}
\]

ここで、[η]は温度Tにおいて、モル体積V_tの溶媒中における比容r、分子量Mを持つ高分子の固有粘度である。Tは高分子の末端間距離の二乗平均であり、溶媒と高分子セグメント間の正味の熱力学的相互作用係数Tθにおいて、理想配位[η]θとなる。Floryの最初の導出においてはfの値は1であるが、一方Stockmayerは(4)式を
\[a_2^f = 1 + 2C_M f \theta (1 - \theta / T) M_0 / v + \cdots \] (9)
と展開し、右辺のM_0/vの係数が、Fixmanの導びいた厳密なa_2の展開式におけるM_0/vの係数と一致するためには、fの値は0.491でなければならぬことを指摘しているので、著者らはfとしてこの値を用いた。

3.1 理想配位

θ温度では、a_1 = 1 であり、θ粘度[η]θの測定から(3)式を用いK = [η]/M_0/vを求めることができる。

実測値Kと定数F(2.87 × 10^{-24} (62/V_1))を用いて計算した(r_1/M_0)と主鎖の炭素原子間の結合のまわりに自由回転を有することが計算した(r_1/M_0)を用いた値を表2に与えた。値は主鎖の回転束縛の尺度と考えられる。これよりKの値はポリスチレンと同様に温度の上昇とともに減少しているようである。またポリスチレンのK値は30,70°Cにおいて、それぞれ22,21.500であるから、ポリ(α-クロロステレン)のK値の方がポリスチレンのそれぞれより若干大きい。しかし、これ2鎖の立体的反発力が静電的な力を影響するか否か、それだけの実験から未解決でない。

また、極性高分子ヘキセン-1ポリスチレンには大きな溶解効果が知られているが、ポリスチレンに対しても、ほぼ等しいθ温度を持つジクロロヘキサンとマロン酸ジエチル中でのKの値が10%程度異なっている結果があり、a_1の値の測定には溶解効果の影響を考慮に入れる必要があると思われる。

つきに固有粘度の温度依存性から熱力学的相互作用パラメーターを求めただが、その際には、この[η]θの測定によるK値を用い、その温度依存性に直線形を仮定した。これによりK × 10^3 の値は10,25,40,55°Cにおいて、それぞれ59.2, 57.8, 56.3, 54.8 である。32°Cにおける値は異なる分子量に対する値の違いが大きいので、この操作からはずした。

3.2 熱力学的パラメーター

ある溶媒中で固有粘度[η]を測定すれば、(3)式よりそれらの温度におけるa(1/[η]θ)/KM_0^2が決まる。固有粘度と温度の関係を表3に示す。C_M がKに逆比例することを考慮に入れ、図6、図7のように(KT/K_M) (a^2 - a_0^2)M^{-1/2} を1/Tに関し図示することにより、切片からT = θ、傾きから2C_Mf_θ(1 - θ/T)を求まる。さらに2C_M = 9.23/V_t(ε = 0.806)を用い、エントロピー・パラメーターf_θがわかる。ただしKTは測定温度TにおけるK_Mは25

表3ボリ(α-クロロステレン)溶液の固有粘度と温度の関係

<table>
<thead>
<tr>
<th>温度(°C)</th>
<th>トルエン</th>
<th>エチルベンゼン</th>
<th>ベンゼン</th>
<th>クロルベンゼン</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.707</td>
<td>0.707</td>
<td>0.707</td>
<td>0.707</td>
</tr>
<tr>
<td>25</td>
<td>0.635</td>
<td>0.635</td>
<td>0.635</td>
<td>0.635</td>
</tr>
<tr>
<td>40</td>
<td>0.604</td>
<td>0.604</td>
<td>0.604</td>
<td>0.604</td>
</tr>
<tr>
<td>55</td>
<td>0.546</td>
<td>0.546</td>
<td>0.546</td>
<td>0.546</td>
</tr>
</tbody>
</table>

図6ボリ(α-クロロステレン)溶液における(KT/K_M) (a^2 - a_0^2)M^{-1/2}と1/Tの関係

I: クロルベンゼン, II: タリエン, III: ベンゼン, IV: エチルベンゼン
表 4 ポリ (p-クテロステレン) 各溶媒の間の熱力学的パラメータ

<table>
<thead>
<tr>
<th>溶媒</th>
<th>δs</th>
<th>Θ(℃K)</th>
<th>ϕ(10^2)</th>
<th>ε(10^12)</th>
<th>ξ(10^-4)</th>
<th>(ε/V)_{12}^{2}</th>
<th>(ε/V)_{22}^{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>クロルペンゼン</td>
<td>9.50</td>
<td>124.4</td>
<td>11.8</td>
<td>4.9</td>
<td>0.431</td>
<td>2.2</td>
<td>...</td>
</tr>
<tr>
<td>ベンゼン</td>
<td>9.15</td>
<td>274.0</td>
<td>10.4</td>
<td>9.6</td>
<td>0.492</td>
<td>3.3</td>
<td>...</td>
</tr>
<tr>
<td>トールエン</td>
<td>8.91</td>
<td>238.6</td>
<td>6.1</td>
<td>4.8</td>
<td>0.487</td>
<td>2.2</td>
<td>...</td>
</tr>
<tr>
<td>エチルペンゼン</td>
<td>8.77</td>
<td>283.2</td>
<td>7.4</td>
<td>7.0</td>
<td>0.496</td>
<td>2.4</td>
<td>...</td>
</tr>
<tr>
<td>酚酸アリル</td>
<td>9.04</td>
<td>613.2</td>
<td>1.2</td>
<td>-2.5</td>
<td>0.487</td>
<td>...</td>
<td>-2.5</td>
</tr>
<tr>
<td>酚酸n-プロピル</td>
<td>8.68</td>
<td>502.4</td>
<td>3.2</td>
<td>-5.4</td>
<td>0.478</td>
<td>...</td>
<td>-4.7</td>
</tr>
<tr>
<td>酚酸n-ブチル</td>
<td>8.28</td>
<td>908.7</td>
<td>2.3</td>
<td>-6.9</td>
<td>0.454</td>
<td>...</td>
<td>-5.2</td>
</tr>
</tbody>
</table>

注 a) 25℃における値。

表 5 混合熱の測定結果から計算したεの値

<table>
<thead>
<tr>
<th>溶媒</th>
<th>ε(10^-4)</th>
<th>溫度(℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>クロルペンゼン-ペンゼン</td>
<td>-0.011</td>
<td>24.33</td>
</tr>
<tr>
<td>クロルペンゼン-トルエン</td>
<td>-0.14</td>
<td>24.33</td>
</tr>
<tr>
<td>クロルペンゼン-四塩化炭素</td>
<td>0.23</td>
<td>25</td>
</tr>
</tbody>
</table>

では定性的にこの式が成立している。Small の方法[15]により計算したポリ (p-クテロステレン) のδsの値は 9.7 であるから、表 4 の芳香族系溶媒の結果は予想に反して、ベンゼン(δs=9.15) の (ε/V)_{12}^{12} の値が、トルエン(δs=8.91)、エチルペンゼン(δs=8.77) のそれより大きいことを示し、また表 5 の結果もエントルピー的には、ベンゼンの方がトルエンよりも悪いことを示している。

一方、ベンゼンのφの値はトルエン、エチルペンゼンのそれよりかなり大きいが、これらの事実は純ペンゼン、トルエンの規則な分子状態が異物質との接触に逆がりかなされている。より大きなエントロピーの増加をもたらす結果と考えられるのである。しかしポリ (p-クテロステレン) に対して無熱溶媒と考えられるクロルペンゼンの (ε/V)_{12}^{12} の値がトルエン、エチルベンゼンのそれと同程度である結果から見て断定的なことはいない。また著者の一人は架橋ポリ (p-クテロステレン) の膨張実験から求めた εsの値とし、ベンゼン、トルエン、クロルペンゼンにつき、それぞれ 0.48、0.45、0.36 を報告し、ベンゼン、トルエンの密度の差は著者らが指摘している[16]。

酢酸エステル系の εの値は負で、(11) 式が用い得ないことを示しているが、この場合には、(1-δs)εsの値は εsの値および溶媒の密度の尺度 εの値に対して準定または逆の役割を果たしており、エチルセルロースおよび酢酸エステル系の同様の報告[17]ともに興味深い。著者らはさらにこのような多くの熱力学系を調べ、熱力学的パラメータと溶媒分子の形状、大きさ、双極子能率との関係を見いだすこと意図している。

沈殿点測定から求められる熱力学的パラメータの値は同じ溶媒中の低分子モデルに対するパラメータとよく一致するところはすでに報告されているが、今回著者らがポリ (p-クテロステレン)

アルコール-水系の粘度
（昭和42年7月14日受付）
菊池 誠・及川瑛子

アルコール-水混合溶液の粘度および密度を測定し、つぎのMacedo-Litovitz式を適用して、溶液内の分子粘度を粘度の関係について考察した。

\[\eta = A_0 \exp \left(\frac{E_s^*}{RT} + \frac{\nu_s}{V_s} \right) \]

\(\eta \) は粘度、\(E_s^* \) はモルあたりの酸化機能エネルギー、\(T \) は絶対温度、\(R \) は気体定数、\(V_s \) はモルあたりの自体容積、\(\nu_s \) は自由容積の重なりを補正するための係数で普通1.0に等しい。\(A_0 \) は定数である。アルコールの\(V_s \) は熟収支から容易に求めることができる。\(V_f \) は \(V - V_s \) に等しい。\(V_s \) はモルあたりの容積である。しかし水には多数の水素結合が存在しているため同じ方法で求めることはできない。本研究においてはNémethy と Scheraga の提案したモデルに基づいて水の\(V_s/V_f \) を求めた。

またアルコール-水混合溶液の赤外および近赤外スペクトルから溶液中における各成分の分子粘度について考察し、溶液の\(V_s/V_f \) を求めた。\(E_s^*/RT \) は\(V_s/V_f \) と粘度の値を上式に代入して求めめた。粘度と\(E_s^*/RT \)および\(V_s/V_f \)の関係をみると、\(V_s/V_f \)は\(E_s^*/RT \)と同様に粘度に等しいが、\(V_s/V_f \)の組成による変化は一つの粘度点があり、このことがアルコール-水溶液の粘度に極端に生じさせるおもな原因となることがわかった。

1 緒 言
アルコール-水混合溶液の粘度や密度はこれまでに多くの測定例が提出されているが、それらの多くは温度範囲が狭く、また組成のわけ方を少なからず満足すべきものではない。

本報においてはメタノール、エタノール、1-プロパノールと水の混合溶液の粘度と密度を10℃から60℃の温度範囲で、また組成を10個の濃度光学における測定した。

ところでアルコールと水の混合溶液の粘度は、ある組成において极大粘度を生ずることが知られている。これは明らかに水とアルコールの分子間相互作用によるものであるが、このことについ

\[\eta = \frac{RT}{E_s^*} \left(\frac{2mkT}{\nu_s^{3/2}} \right)^{1/2} \exp \left(\frac{E_s^*}{RT} + \frac{\nu_s}{v_f} \right) \]

\(\eta \) は粘度、\(R \) は気体定数、\(T \) は絶対温度、\(E_s^* \) は液体分子の平衡位置間のポテンシャル障壁の高さ（定容下的モルあたりの流動の活性化エネルギー）、\(m \) は分子の質量、\(k \) はBoltzmann定数、\(\nu_s \) は分子の容積、\(\nu_s \) は粘密度、\(v_f \)は分子あたりの自由容積で\(v_f = v_{sF} \)に等しい。\(\nu_s \) は分子の容積である。\(\gamma \) は粘度の重なりを補正するための