エタンの六置換誘導体結晶における分子運動

昭和41年10月29日受理

小出 力

\[X_n(CH_3)_3-C-C(CH_3)_3-Y_m \] \((X, Y \) は塩素原子または臭素原子) で示される一連のエタン誘導体は、いずれも固相で転移現象を示し、かつその最高温昇の結晶は等方晶系に属している。これらの一連の誘導体の転移ならびに転移のエントロピーの解析を行ない、転移ならびに転移のメカニズムと、転移および分子内-ハロゲン原子の物性を考慮した。その結果、これらの一連の物質の転移または転移のメカニズムは、同一のものであることがある。転移エネルギーは分子内-ハロゲン原子の数により大略加減の傾向を示す。解釈現象に対する分子内-ハロゲン原子の影響はわずかであるが、転移現象に対するこの影響は大きく悪く、分子間力あるいは分子内ポテンシャルエネルギーの値は、分子のハロゲン原子数に依存する。分子の大きさと解釈現象との間には直線関係が立つが、転移現象との関係は統一的に解釈できない面がある。

1. 序 論

分子結晶あるいは分子性の液体における分子運動と、分子間力または分子内回転ポテンシャルエネルギーとの関係、物性学上からみて興味のある問題で、古くから数多くの研究がなされている。この中で、分子間力を形成する分子からなる物質の構造、大別して、分子が液相で有していた移行の自由度は結晶中ではほとんど失われており、かつ分子間に長距離発現度を生じて結晶格子がたたまれることにある。一方、分子運動に関してもと、液相で分子の有している回転的運動の自由度が固相に際して、ほとんど消滅する場合と、それほどまでは失われない場合がある。一般に、球形分子または球形類似分子になる物質（たとえば、希元素、四面体型分子であるメタンあるいはメタンのメチル基またはハロゲン原子による四置換誘導体）においては、凝固点直下のおよび恒温圏にわたって結晶格子中においても、分子の回転的運動の行なわれていることが Smyth らをはじめとする数多くの研究者によって、誘電的測定2, 比熱測定3, X 線研究4, あるいは核磁気共鳴吸収測定5 などにより明らかにされている。

他方、\(X_n(CH_3)_3-C-C(CH_3)_3-Y_m \) (\(X, Y \) は塩素原子または臭素原子を示す。\(n, m \) は 0, 1, 2, 3) で示される一連のエタン六置換誘導体の分子形態は、その外観において図 1 に示したよう、大略四面体型、四面体型分子と同様球形類似分子である。したがって、これらのエタン六置換誘導体分子間で回転運動を行なうものと予想し、著者らは以前から研究を行なってきた（表 4 参照）その結果、これらの誘導体には固相転移があり、融点直下の間の分子運動が論じられていることを明らかにした。

2. 転移エントロピーおよび回転回転
ポテンシャルエネルギーの算出

2.1 転移なしし解釈のエントロピーの推定

本研究で取扱った各物質にいずれも固相転移現象が認められ、その転移温度は表 1、第 7 項に示した。この表の第 2 行の Cl_2C=CCl_3 および最下行の \((CH_3)_2C=C(CH_3)_2 \) の転移点は文献値に近いもので、比熱測定によるものであるが、他のすべての物質の場合は、示差熱解析法（D. T. A.）によって著者が見だしたものである。それゆえ、比熱測定による上記 2 物質以外の物質については厳密な転移を含んでは転移エントロピーを求めることができないが、D. T. A. 法測定は一定加熱速度で行ない、かつ使用した試料の量がわかつているので、D. T. A. の温度変曲値からそれらの精度値を求めることができる。精度値を求める方法は文献 12 による。その結果は融点ともなる温度とエントロピーに応じて

22 分子内回転自由ポテンシャルエネルギーの計算
分子が分子軸（分子中心の C-C 軸）のまわりに分子内回転を行う場合の束縛ポテンシャルエネルギーは、ClC-CCl_{13} (13) ならびに (CH_{3})_{2}C-CH_{3} (13) の 2 物質については実測値が得られているが、他の物質についてはもっぱら実測値は示していない。しかし、Scott と Scheraga (13) の提出したエニオンならびにエニオン類似分子における分子内束縛回転ポテンシャルエネルギーの半実験的計算法によって、これら一連の物質のポテンシャルエネルギーを算出した。その結果は表3.第2表に示した。この計算方法によると、ClC-CCl_{13} の計算値は 19.4 kcal/mol であり、実測値 19 kcal/mol あるいは 12 kcal/mol よりもかなり大きくなる。Scott ら ClC-CCl_{13} については、20 kcal/mol の値を得て実測値と異なることを指摘している。

3 考 察
3.1 分子内のメチル基の数と結晶構造
本研究で取り扱った一連のエニオン誘導体の転移点と結晶構造は表1に示したものである。これらの物質の最高融点の結晶構造はいずれの場合も、単位格子を 2 個の分子を含む体心立方格子である。その単位格子は (CH_{3})_{2}C-CH_{3} の 7.69 Å (12) から、分子の含むメチル基の数が増じヘッケン原子数が増したにしたがって、順次 ClC-CCl_{13} の単位格子 7.43 Å (13) へと重合している。分子に含まれる置換基の van der Waals 半径の値 (20) は、メチル基で 2.00 Å、塩素原子では 1.95 Å、塩素原子では 1.80 Å であることを考えると、単位格子の示すこの変化の傾向は一応妥当なものとみられる。しかし、BrC-C(ClCCl_{13}) の単位格子 7.42 Å (11) は、この分子が塩素原子を含むにもかかわらず、塩素より van der Waals 半径の小さい塩素を含む分子 ClC-CCl_{13} の 7.43 Å (13) または ClC-C(ClCCl_{13}) の 7.46 Å (10) よりもやや単位格子であるのは、一応注目しなければならない。

3.2 高温相ならびに低温相における分子運動
表1に示した一連の物質の高温相における分子運動は熱起されており、かつ分子の分子軸配向は乱れていることが明らかにされている (9) (13) (19) (20) (21)。
一方、ClC-C(CH_{3})_{2}Cl (13) ならびに (CH_{3})_{2}C-CH_{3} (13) の結晶のプロトン核磁気共鳴吸収測定により、これら 2 物質の高い相の結晶格子においては、分子はほとんど自由回転を行なっていることを明らかにした。また、ClC-C(ClCCl_{13}) やおよび ClC-C(ClCCl_{13}) Br 結晶の誘電率測定 (20) の結果では、誘電率の値は低温相でわずかに小さく、転移点で急激に増大し、高温相でかなり大きい値を示している。

低温相における分子運動は、核磁気共鳴吸収によれば、ClC-C(ClCCl_{13}) の場合にはメチル基の C_{1} 軸回転のみが励起されている (13)。他方、ClC-C(CH_{3})_{2}Br (13) ならびに BrC-C(ClCCl_{13}) (9) について行なった低温における光学的観測では、分子軸配向が錯位された (表1参照)。また、ClC-C(ClCCl_{13}) の低温相における粉末 X 線写真では、高温相の場合にくらべて数多くのデバイライが撮影され、結晶は明らかに立方晶系よりも低温相の変化をしたことを示した。ClC-CCl_{13} の低温相は正方晶系ならびに三斜晶系の結晶である。

表1に示した一連の物質の分子はosiに似た性質を有していることから考えて、上に示した諸結果により、これらの結晶の高温相において正方晶系の分子軸配向として安定する。低温相においては、分子軸配向は乱れることなく、分子運動もメチル基の軸回転のみが行なわれているといえるよう。

3.3 分子間力および分子内回転ポテンシャルエネルギー
これらの結晶の高温相の単位格子から分子間分子間距離を求めると、隣接分子の置換基を互いに歯車的にかみ合わせ

表1 エニオン六置換誘導体の結晶構造、転移点および光学的性質

<table>
<thead>
<tr>
<th>物質</th>
<th>高温相</th>
<th>結晶系</th>
<th>転移点 (°C)</th>
<th>融点 (°C)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClC-CCl_{13}</td>
<td>7.43</td>
<td>正方三針</td>
<td>72 (1)</td>
<td>108</td>
<td>20</td>
</tr>
<tr>
<td>ClC-C(CH_{3})Cl</td>
<td>7.46</td>
<td>b. c. c.</td>
<td>等方性</td>
<td>43</td>
<td>173</td>
</tr>
<tr>
<td>ClC-C(CH_{3})Br</td>
<td>7.42</td>
<td>b. c. c.</td>
<td>等方性</td>
<td>40</td>
<td>181</td>
</tr>
<tr>
<td>ClC-(CH_{3}){2}C-CH{3}</td>
<td>7.58</td>
<td>b. c. c.</td>
<td>複屈折</td>
<td>35</td>
<td>151</td>
</tr>
<tr>
<td>ClC-(CH_{3}){2}C(ClCCl{13})</td>
<td>7.58</td>
<td>b. c. c.</td>
<td>等方性</td>
<td>75</td>
<td>158</td>
</tr>
<tr>
<td>(CH_{3}){2}CCl{13}</td>
<td>7.63</td>
<td>b. c. c. より低対称</td>
<td>残余性</td>
<td>139</td>
<td>134〜135</td>
</tr>
<tr>
<td>Br(CH_{3}){2}C-CH{3}</td>
<td>7.66</td>
<td>b. c. c.</td>
<td>等方性</td>
<td>114</td>
<td>151</td>
</tr>
<tr>
<td>(CH_{3}){2}C(ClCCl{13})</td>
<td>7.69</td>
<td>b. c. c.</td>
<td>等方性</td>
<td>121 (11)</td>
<td>101</td>
</tr>
</tbody>
</table>

12) 菅 宏, 村井秀和, 他, 日化, 82, 24 (1961).
20) C. Finback, This. Kjen Berge., 17, 2 (1937).
<table>
<thead>
<tr>
<th>物質</th>
<th>質量 (g)</th>
<th>転移熱 ΔH_t (kcal/mol)</th>
<th>転移エンタロピー ΔS_t (e.u.)</th>
<th>融点 (°C)</th>
<th>転移熱 ΔH_{m} (kcal/mol)</th>
<th>転移エンタロピー ΔS_{m} (e.u.)</th>
<th>転移熱 ΔS_t</th>
<th>融点 (°C)</th>
<th>転移エンタロピー ΔS_{m} (e.u.)</th>
<th>転移熱 ΔS_t</th>
<th>融点 (°C)</th>
<th>転移エンタロピー ΔS_{m} (e.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClC-C-Cl</td>
<td>345</td>
<td>315</td>
<td>2.6</td>
<td>7.51</td>
<td>7.61</td>
<td>458</td>
<td>2.3</td>
<td>2.33</td>
<td>5.02</td>
<td>5.07</td>
<td>1.54</td>
<td>1.50</td>
</tr>
<tr>
<td>ClC-C-(CH3)_2Cl</td>
<td>233</td>
<td>7.8</td>
<td>6.54</td>
<td>5.46</td>
<td>456</td>
<td>2.2</td>
<td>2.7</td>
<td>4.93</td>
<td>5.76</td>
<td>1.33</td>
<td>1.32</td>
<td>11.93</td>
</tr>
<tr>
<td>ClC-(CH3)_2C-Cl</td>
<td>198</td>
<td>1.1</td>
<td>6.19</td>
<td>5.46</td>
<td>447</td>
<td>2.1</td>
<td>2.7</td>
<td>5.36</td>
<td>5.76</td>
<td>1.22</td>
<td>1.22</td>
<td>11.90</td>
</tr>
<tr>
<td>Cl(CH3)2-C-(CH3)2Cl</td>
<td>163</td>
<td>1.0</td>
<td>6.32</td>
<td>5.46</td>
<td>431</td>
<td>2.2</td>
<td>2.7</td>
<td>4.86</td>
<td>5.46</td>
<td>1.30</td>
<td>1.30</td>
<td>11.90</td>
</tr>
<tr>
<td>Cl(CH3)2-C-(CH3)2Br</td>
<td>134</td>
<td>0.7</td>
<td>5.25</td>
<td>4.07</td>
<td>427</td>
<td>2.2</td>
<td>2.7</td>
<td>5.40</td>
<td>5.46</td>
<td>0.98</td>
<td>0.98</td>
<td>10.65</td>
</tr>
<tr>
<td>Br(CH3)2-C-(CH3)2Cl</td>
<td>159</td>
<td>0.9</td>
<td>5.36</td>
<td>4.24</td>
<td>427</td>
<td>1.9</td>
<td>2.7</td>
<td>5.18</td>
<td>5.46</td>
<td>1.01</td>
<td>1.01</td>
<td>10.64</td>
</tr>
<tr>
<td>(CH3)3C-C-(CH3)3</td>
<td>152</td>
<td>0.5</td>
<td>3.13</td>
<td>3.13</td>
<td>374</td>
<td>1.8</td>
<td>1.802</td>
<td>4.81</td>
<td>4.82</td>
<td>0.71</td>
<td>0.71</td>
<td>7.95</td>
</tr>
</tbody>
</table>

中央の C-C 軸をはさんで向き合うハロゲン原子の対の数が多いほど増加の程度は大である。この示した関係は、分子内の成分でなく、分子間ポタンシャルエネルギーの場合よりも立つのようである。

3.4 分子内ハロゲン原子数と転移のメカニズム

表 2 の第 4 項に示した転移熱エンタロピー ΔS_t の顕著価を示してある。これらの転移エンタロピーは、転移熱を示した。その上、下の最温における分子の配向ならびに分子運動の状態が変われば、計算熱力学的に求めることが出来る。そこで、その算出のためには分子配向と分子運動の状態は、X 解析[i]と核磁気共鳴吸収[j]の結果に基づいてつづいて以下に仮定した。

すなわち、分子軸の配向は低温相では秩序状態あり、高温相においては分子軸が統計的に等しい確率で結晶格子の2つの対角線的方向に配向する仮想構造である。つぎに、高温相における分子の運動状態についてはつぎの3つの運動模型を仮定した。

すなわち、第 1 は分子内部のメチル基はそれぞれも C 軸対称なまわりに回転運動を停止している。第 2 に、分子全格子全体は分子中心の C 軸のまわりに分子内部転回を停止ている。第 3 に、分子全体としては分子軸のまわりに回転運動を進行している。

これらの仮定のうち、第 1 のメチル基の回転運動は核磁気共鳴吸収から[j]、転移相変わらぬ最温範囲でも十分吸収されていることが明らかにされている。他の状態においても低温相でのメチル基の回転は阻止されているものとした。

したがって、この第 1 の運動模型の転移エンタロピーへの寄与はない。第 2 ならびに第 3 の運動は、同じく核磁気共鳴吸収の結果から低温相で静止しているものと仮定した。

さてこれらの模型のうち、分子軸方向の変化による転移エンタロピーへの寄与は R と $ln 8$ で与えられ、その値は 4.13 e.u. である。しかし、(CH3)2-C-(CH3)2Cl の場合には多少事情が複雑で、高温相における分子の安定形が塩素原子に関してトラシム状態やメチルシップ状態を示すもので、転移熱方向に寄与が異なってくる。この状態の溶液において分子の安定形は、森谷らの研究[k]によってトラシマーとメチルシップであることが明らかにされている。一方、この結晶と同様高温相での凝縮性であるサシンノントール (CH3CH2) は高温相では、分子の安定形はトラシ

*2 分子が無極性なら、4 本の対角線に平行な 4 つの方位であり、有極性ならそれと逆方向にも同時に配向し、8 つの方位をとる。

小出：エタンの六価炭素体晶核における分子運動

表3 転移エントロピーの計算値と測定値

<table>
<thead>
<tr>
<th>物質</th>
<th>分子内電荷転移ポリドメル (kcal/mol)</th>
<th>転移点 (K)</th>
<th>分子転移の計算値による寄与</th>
<th>分子全体転移の寄与</th>
<th>計算値のエントロピー</th>
<th>αc</th>
<th>D.T.A. によるエントロピー</th>
<th>D.S. の相対比</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl₃C-C(CH₃)Cl</td>
<td>9.7</td>
<td>233</td>
<td>4.13</td>
<td>4.76</td>
<td>3.02</td>
<td>11.91</td>
<td>1.11</td>
<td>5.54</td>
</tr>
<tr>
<td>Cl₃C-C(CH₃)Br</td>
<td>211</td>
<td>4.13</td>
<td>4.96</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.54</td>
<td>1.22</td>
</tr>
<tr>
<td>Cl₂(C₃H₇)-C(CH₃)₃</td>
<td>8.0</td>
<td>163</td>
<td>4.48</td>
<td>4.18</td>
<td>2.30</td>
<td>10.96</td>
<td>1.02</td>
<td>5.49</td>
</tr>
<tr>
<td>Cl(C₃H₇)-C(CH₃)₃</td>
<td>5.9</td>
<td>134</td>
<td>4.13</td>
<td>3.84</td>
<td>2.73</td>
<td>10.72</td>
<td>1.00</td>
<td>5.25</td>
</tr>
<tr>
<td>Br(CH₃)₃-C(CH₃)Cl</td>
<td>6.5</td>
<td>159</td>
<td>4.13</td>
<td>4.40</td>
<td>3.61</td>
<td>11.54</td>
<td>1.07</td>
<td>5.36</td>
</tr>
</tbody>
</table>

ス形とゴーシュ形の混合形であり、ゴーシュ形がより安定であると考えられた。以上の実験から推定して、Cl₃C-C-C(CH₃)Cl 分子の高温相における安定型はトランス-ゴーシュ混合形とみられる。転移エントロピーの寄与の計算においては、高温相にトランス形分子が約70%、ゴーシュ形分子が約30%ずつ含まれているものと仮定した。

C-C軸のまわりの分子内電荷転回による寄与は McCulloughの結果（表2）にしたがって求めた。表3によりエントロピーを求めるためには、分子内電荷転回のポリドメルエネルギーが必要であるが、これについては2.2で求めた計算値（表3参照）を用いた。

以上の計算によるねの転移反応エントロピーの寄与は表3、第4、5、6の各欄に示した。第7欄はこれらの寄与の和であることを、計算による転移エントロピー DSCである。Cl₃C-C(CH₃)Brについても、転移ポリドメルが求められないことから除外した。

第9欄は2.1に示したD-T.A.法により求めた転移のエントロピー DSeである。これら DSC と DSe を比較すると、DSCの方が DSe よりもかなり大きい値である。その原因の一つは DSe が精密な比較測定から得たものではなく、D-T.A.法による理論値（文献30）と関係し、他の一つは、分子内転回の寄与の算出に用いた分子内転回ポリドメルエネルギーは、分子内ハロゲン原子があるとき大きい値となることを考慮することである。それゆえ、DSC と DSe との相対値を直接比較することは妥当ではない。そこで、転移点のもっとも低い Cl₃C-C-C(CH₃)₂ Cl の DSC, DSe を基準に特有の分子のそれらの値との相対比 αc と αs を求めその両者の傾向を比較した。

αc と αs は表3の第8欄および第10欄に示した。

第8欄の αc の値はいずれの物質においても大略 1.0 の値である。第10欄の αs の値は αs よりもやや小さく、約 1.2 の値である。αs は実験式による転移ポリドメルを用いており、αc と D.T.A.法によるものであることを考慮すると、αc と αs の物質による傾向は一致しているとみることができる。

Cl₃C-C-C(CH₃)Cl の場合にはさらに注意を要する。高温相の分子形は 7:3 の割合でトランス形とゴーシュ形が存在するものと仮定して、1.02 の αc を得た。いま高温相にトランス形分子のみが存在すると仮定すると αc は 0.87 となり、トランス形とゴーシュ形の混合形が 6:4 であるとすると αc は 0.94 となり、いずれも他の物質の場合の αc を比較して小さい値となる。このような物質と類似した関係にあるスタニゾリエンの場合では、Westrum らが比熱測定による転移のメカニズムの研究を行ない（30），Cl₃C-C-C(CH₃)Cl の場合と同様に高温相にトランス-ゴーシュ両形が存在するものとして実測値と一致したエントロピーを得ている。

分子内に2個のハロゲン原子をもつ二つの物質、すなわち Cl₂(C₃H₇)-C(CH₃)₂ Cl と Cl₃C-C-C(CH₃)₂ Cl では、それらの高温相の単位構造は大体に等しいが、転移点は異なる（表1参照）。この原因は上の分子転向によるエントロピーへの寄与にある。すなわち、前者では転移にともない分子転向の乱れは固有分子であるから 6 であるが、後者では高温相の分子形がトランス-ゴーシュ形であるために転移のエントロピーが存在するので分子配向の寄与が大きい。

したがってこれらの一連の物質の転移のメカニズムには大差はなく、転移にともなう分子運動の変化は上記した形のものと結論することができる。また、分子にハロゲン原子が多く含まれる
ほど転移点が高くなることも理解できる。

つぎに分子内のハロゲン原子の数と分子運動との関係を知るため、分子内のハロゲン原子の数を横軸にとり、縦軸に転移点または解釈のエントロピーを目盛って図2に示した。図2-aはΔSmとΔSm + ΔS1（表3参照）であるが、これ分子が結晶内ですべての分子運動を完全に停止している状態から、液相における分子運動の状態に変化する際にともなるエントロピーである。この図をみると、ΔSm + ΔS1は分子内のハロゲン原子の数が1個から6個である場合にはほぼ一直線上にのり、ハロゲン原子によるこの場合の加成的傾向が認められる。[(CH3)2C-C(CH3)3]のの場合のみがこの直線関係からずれてとくに小さい値であるのは、分子内にハロゲン原子を含まないために、分子内あるいは分子間ポテンシャルエネルギーがとくに小さいためであろう。

ΔSmはハロゲン原子の関係は図2-bに示してある。ΔSmの値は表2にもみられるように、(CH3)2C-C(CH3)3の4.8え.u.と、Cl4C-CCl4の5.0え.u.との間にすべておさまっており、ΔSmのハロゲン原子による寄与はわずかであることを示している。これに対し、図2-cのΔS1はΔSm + ΔS1の場合と同様に、ハロゲン原子数に従加成的傾向が認められる。このΔS1とΔSmのハロゲン原子の数による依存性の差異は、解釈と転移におけるハロゲン原子の寄与の大きさに差異のあることを示しており、転移の場合の方がその影響は大きいことを示している。

図3には高温相の単位長から求めた最も短い分子間距離R0と、分子が自由回転を行なう際の必要な最小直径Rとから求めたη = (R - R0)/R0と、転移点、解釈点、ΔSmならびにΔS1との関係を示した。図3-aは解釈点と転移点のηとの関係を示すものであるが、各物質の解釈点とηはほぼ直線関係を示している。しかし転移点とηの間にいずれの関係をも見いただすことができない。一方、図3-bのエントロピー変化とηとの関係は、ΔSmとηの場合にはどの物質の場合でもほぼ直線上にのり、わずかな傾きを示している。いま解釈に際して分子の得る運動の自由度が並進の自由度のみであるとすると、解釈のエントロピーはR ln 5で与えられその値は約2.0 e.u.である。したがって、並進の自由度によるエントロピーとΔSmとの差は約4.0 e.u.であってほぼ一定値である。よって、解釈のメカニズムはいずれの結晶の場合にも同一のもので、分子の並進運動によるものが支配的である。ハロゲン原子による分子間力あるいは分子内ポテンシャルの影響はごくわずかであることがわかる。また、高温相における分子の熱運動は十分に励起されていることは明らかである。

他方、転移にともなうエントロピーΔS1とηとの関係は統一的に解釈することはできない。この図で、3と7の物質はともに臭素原子を含む分子であるが、この二つの物質は他の塩素原子を含む物質とは異なった曲線上にある。これは塩素原子あるいは臭素原子の転移のエントロピーに対する寄与が異なることを示しているものと解釈できる。

終に、本研究を行なうにあたり、終始御指導、御鞭撻を賜りました大阪大学理学部関集教授、大阪芸芸大学小田次教授に深甚なる感謝の意を表します。