エチレンジアミン塩溶液中でのマンガン(II)とEDTAの反応

2.2 実験方法

柳本ガルパレコーダーモデル PB-4 を用いて -0.5 V vs. SCE における拡散電流値の時間変化を測定した。PH は日立機器 pH メーター F 5 を用いて測定した。酸素の影響を調べる実験では日立自己記光度計 EPS 3 型を用いて 490 mp の吸収を追跡した。水銀の影響を調べる実験では、四塩化炭素を加え、四塩化炭素の層で滴下した水銀をおいた形。イオン強度は酢酸ナトリウムを用いて 0.2 で調節し、温度を 25.0 ± 0.1, 34.9 ± 0.1°C で調定した。光の影響を遮るため測定は黒色セル中で行なった。

溶液 40 ml をビペットでセルに入れ、恒温槽に浸して約 30 分間酸素を通じて酸素を除き残余電流を測定したのに、小さい変化が観察された。マンガン(III)EDTA 錠体を量ったマンガン(II)EDTA 錠体に量を付し、マンガン(III)EDTA 錠体の生成速度を測定した。マンガン(II)EDTA 錠体の生成速度を測定した。
2.3 解析法

一定 pH および一定の MnEDTA の濃度の溶液に MnEDTA 錠を 0.5 ~ 3 mmol/l 溶かし、各濃度においてポーラログラムの波高を時間に対してプロットし各濃度における時間 0 近くの接線の切片および勾配を求める。切りを初期濃度に対してプロットすると直線がえられ勾配から銅錠 1 mmol/l に対する電流値がえられる。この値を用いて初価の勾配から初期電流 R を求める。分解反応によって生成する錠体 (MnEDTA および錠を体とみなす) される、錠体の濃度に比例して無視できると考え、MnEDTA の鉱化後に加えた電流値を用いた。

図 1 に初期速度を初期濃度で割った値を初期濃度に対してプロットした。これを直線とし、初期速度には (1) 式の関係が成立し、それと解釈して種々の pH および MnEDTA の濃度についての (1), (1') 式の各項の係数 A, B の考察を行なった。

$$ R = A[MnEDTA] + B[MnEDTA]^2 \tag{1} $$

$$ \therefore R/[MnEDTA] = A + B[MnEDTA] \tag{1'} $$

図 1 (1') 式のプロット

3.3 酸素、水銀の影響および電流値におよぼす pH の影響

図 1 からわかるように、酸素を除去しない溶液を用いて測定したスペクトルおよび水銀化水銀でおおった
以上ポーラログラフ法によるデータ

図 1 (1') 式のプロット

3.3 酸素、水銀の影響および電流値におよぼす pH の影響

図 1 からわかるように、酸素を除去しない溶液を用いて測定したスペクトルおよび水銀化水銀でおおった実験結果がともに実験誤差範囲内で一致していると考えられるので、初期速度は酸素および水銀には大きく是影響されないと考えられる。しかし、長期測定すると水銀表面がむくんで完全に影響がないとはいえない。

吉野らによると MnEDTA 錠体は 1 分子の配位水を有し、本実験の pH 範囲では H⁺ を解離する (2) 式のような酸解離反応が存在する。

$$ MnIII\text{edta} H_2O = MnIII\text{edta} OH^+ + H^+ \quad K_a \tag{2} $$

$$ K_a = 2.4 \times 10^{-4} \text{mol/l} (\text{25.0}^\circ \text{C}, \quad \rho = 0.2) \quad \text{edta} \quad \text{は EDTA の} \quad \text{**2 等者ら}}

4 価の陰イオンを意味する。

本実験ではポーラログラフ法を用いて拡散電流値を測定したが、これは上記の二つのイオン種の電流値の和である。ここで二つのイオン種の拡散電流値は等しいと仮定、したがって拡散電流値はおのおのイオン種の電流値の和に比例するとした。実際には pH を変化させたときの電流値は、硝酸カリウム-硝酸緩衝液 (pH = 0.5) では pH 3.30 で 3.34 μA (mmol/l), pH 4.13 で 3.32 μA (mmol/l)，で、酸化還元電流値 (pH = 0.5) では pH 3.75 で 2.94 μA (mmol/l), pH 5.26 で 2.93 μA (mmol/l) であった。酸化還元電流値中の測定値については pH 調節のための水酸化の濃度の上昇による波高の差を鋼 (I) イオンの拡散電流を用いて補正した。ただし、酸化還元電流値の影響については考慮していないので、硝酸カリウム-硝酸緩衝液中の値と酸化還元電流値中の値の比較はできない。

以上の結果から、pH を変化させても拡散電流値は変化しないといえるので、二イオン種の拡散電流値はほぼ等しいといえよう。

3.2 二次の項 B におよぼす pH の影響

次に pH を変化させた実験の結果を示した。

表 1 A, B におよぼす pH の影響

<table>
<thead>
<tr>
<th>pH (×10⁻⁴ sec⁻¹)</th>
<th>A (×10⁻⁴ l·mol⁻¹·sec⁻¹)</th>
<th>B (l·mol⁻¹·sec⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.66x</td>
<td>0.542</td>
<td>0.056</td>
</tr>
<tr>
<td>3.79x</td>
<td>0.567</td>
<td>0.079</td>
</tr>
<tr>
<td>4.00x</td>
<td>0.584</td>
<td>0.129</td>
</tr>
<tr>
<td>4.62x</td>
<td>0.608</td>
<td>0.476</td>
</tr>
<tr>
<td>4.77x</td>
<td>0.71</td>
<td>0.757</td>
</tr>
<tr>
<td>5.05x</td>
<td>0.66</td>
<td>1.15</td>
</tr>
<tr>
<td>5.30x</td>
<td>0.78</td>
<td>1.31</td>
</tr>
</tbody>
</table>

注 * $b = B/K_a[H^+]$ は活動度係数を 1 として pH から計算した。

pH による二次の項 B の変化はイオン種の変化によるものと考え解釈すると、各イオン種は (2) 式の解離定数 K_a を用いて

$$ [MnIII\text{edta} H_2O] = [H^+] / K_a + [H^+] \quad \tag{3} $$

$$ [MnIII\text{edta} OH^-] = K_a / [H^+] + [H^+] \quad \tag{4} $$

ただし、

$$ [MnEDTA] = [MnIII\text{edta} H_2O] + [MnIII\text{edta} OH^-] $$

で表わされる。K_a を混成定数、すなわち[H⁺]のみを pH 測定から求めた値を用い、(3) 式の[H⁺]を pH から求めた値を用いながら、(3) 式は正確な濃度の関係で成立する。

表 1 に示したように $b = B/K_a[H^+] / (K_a + [H^+])$ がかわり一定値を示していることを考慮と、二次反応は (4) 式に示されるイオン種の反応で進むと考えられる。

$$ MnIII\text{edta} H_2O^- + MnIII\text{edta} OH^- \quad k_f \quad \tag{4} $$

3.3 二次の項 B におよぼす MnEDTA の影響

表 2 に MnEDTA の濃度を変化させた実験の結果を示した。
表2 A, BにおよぼすMn³⁺EDTAの影響

\[
\begin{array}{c|c|c|c}
A (mmol/l) & B (mol/min) & 1/b (sec⁻¹) \\
\hline
0.2 & 0.78 & 1.31 & 1.679 \\
0.4 & 0.63 & 0.803 & 2.361 \\
0.6 & 0.62 & 0.700 & 2.990 \\
0.8 & 0.55 & 0.610 & 3.435 \\
1.0 & 0.53 & 0.470 & 4.456 \\
1.2 & 0.43 & 0.498 & 4.244 \\
\end{array}
\]

4.3 一次の項 AにおよぼすpHの影響

一次の項Aについては、(2)式で示される各イオン種が単独に一次分解反応をすると(10)式を考える。

\[
\begin{align*}
&Mn^{II} \text{ edta} \xrightleftharpoons{k_{11}} H_2O^- \\
&Mn^{II} \text{ edta} OH^- \xrightleftharpoons{k_{12}}
\end{align*}
\]

一次の分解放速度R_1は

\[
R_1 = k_{11}[H^{+}] + k_{12}[K_d]\]

で表わされる(3)式を用いて書きなおすと(12)式がえられる。

\[
R_i = \frac{k_{11}[H^+] + k_{12}[K_d]}{K_a + [H^+]^2}[Mn^{II}EDTA]_i
\]

3.5 実験結果との照合

一次の項としては(10)，(12)式，二次の項としては(7)〜(9)式を考えると，分解放速度Rは

\[
R = k_{i1}[H^+] + k_{i2}K_a
\]

となり，これは実験を解析した(1)式とよく対応し

\[
A = \frac{k_{i1}[H^+] + k_{i2}K_a}{K_a + [H^+]} \quad \text{(14)}
\]

\[
B = \frac{k_f}{K_a + [H^+]^2}
\]

とされる。

\[
A \text{ については(14)式から}
\]

\[A(K_a + [H^+]^2) = k_{i1}[H^+] + k_{i2}K_a \quad \text{(16)}
\]

がえられ，左辺[H⁺]のプロットは直線になり，切片および勾配からk_{i1}およびk_{i2}がえられるはずである。図2にこのプロットを示した。

がえられる。したがって、
\[\frac{1}{b} = k_f + \frac{k_b}{k_f} [\text{Mn}^{II}\text{EDTA}] \]
となる。

(18)式で \(1/b \) と \([\text{Mn}^{II}\text{EDTA}]\)をプロットすれば直線になり、
切片および勾配から各速度定数が求まるはずである。図3にこの
プロットを示した。34.9°Cでの値も同様に図2、図3にプロッ
トした。これらが直線であると見なして求めた各速度定数を表3
に示した。

\[\frac{1}{b} \text{ vs } [\text{Mn}^{II}\text{EDTA}] \]

表3 速度定数および活性化エネルギー

<table>
<thead>
<tr>
<th>反応</th>
<th>(E_a) (kcal/mol)</th>
<th>(k_f) (sec(^{-1}))</th>
<th>(k_b) (mol(^{-1})sec(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Mn}^{II}\text{EDTA} \text{H}_2\text{O} \rightarrow \text{Mn}^{III}\text{EDTA} \text{H}_2\text{O})</td>
<td></td>
<td>5.59</td>
<td>2.3</td>
</tr>
<tr>
<td>(\text{Mn}^{III}\text{EDTA} \text{H}_2\text{O} \rightarrow \text{Mn}^{II}\text{EDTA} \text{H}_2\text{O})</td>
<td></td>
<td>5.59</td>
<td>7.3</td>
</tr>
</tbody>
</table>

4 考察

さきに発表されている報告では、\(\text{Mn}^{II}\text{EDTA} \), \(\text{Mn}^{III}\text{CyDTA} \), \(\text{Mn}^{III}\text{HEDTA} \)などはすべて錯体について一次で分
解反応が進むとして取り扱われているが、解析のさいに \(\log [\text{Mn}^{III}H] \) vs. \(t \) の関係を長時間にわたってプロットしているため
に、\(\text{Mn}^{II}\text{EDTA} \)と類似した分解生成物がかなり生成し、本実験で
示される(13)式の二次の項が小さくなってしまい、近似的に
一次反応として成立したものをと考えられる。また、Schroederらが
EDTA偶則、\(\text{pH} \leq 3 \)の条件で実験を行わない
EDTAラジカルに常態状態の取り扱いを用いて解析しているが不均等化反応につ
いては述べていない。\(\text{pH} \leq 3 \)では本実験で示される二次の項は
0になり、新たに\(\text{Mn}^{II}\text{EDTA} \)錯体自体の解離反応、\(\text{Mn}^{III}\text{EDTA} \)
の反応などが関与してくるので、本実験の \(\text{pH} \) 領域とは当然別の
反応が起こっていると考えられる。

本実験では分解生成物の影響を小さくするために、初めから
\(\text{Mn}^{II}\text{EDTA} \)を加えており、分解反応が進む時間の初期では
\(\text{Mn}^{II}\text{EDTA} \)はほぼ一定と考え、したがって、二次の項が初期
は一定として初期速度を用いて行なったが、初期速度を求
めるときの誤差が大きいため、この解析から、本実験で示した
不均等化反応の機能が正しいと決定することは難しい。しか
し、\(\text{Mn}^{III}\text{EDTA} \), \(\text{Mn}^{III}\text{CyDTA} \), \(\text{Mn}^{III}\text{HEDTA} \)などは \(\text{pH} \)
を高くすると二価酸マンガンと水酸化マンガン(1)に可逆的に変
化することが述べられており、このことから考えても \(\text{Mn}(II)
も錯体を形成していても \(\text{pH} \) の範囲によっては不均等化反応を
起こすが、その速度はあまり大きくないと考えられる。不均等化
反応には小さい平衡を仮定すると分解速度 \(R = \frac{k_b k_c}{k_f} \)
(18)[Mn^{III}EDTA]で \(\text{Mn}^{III}\text{HEDTA} \)と \(\text{Mn}^{III}\text{EDTA} \)と
などはこの実験結果を説明できない。

マンガン(II)を用いた有機配位子を酸化するさいに2倉のマン
ガン塩を加えることにより反応が妨害される事実が報告されて
いるが、これも不均等化反応による項と考えられる。
不均等化反応の摂速段階として、\(\text{pH} \)変化の実験結果から(7)
式を考えたが、(7)式の反応を考えて実験結果は説明できる。

\[
2 \text{Mn}^{III} \text{EDTA}^2- + \text{H}^+ \rightarrow \frac{k_f}{k_b} \frac{k_f}{k_b} \text{Mn}^{III} \text{EDTA}^2- + \text{H}_2 \text{O}
\]

ここで、\(k_f = k_b/k_c \)の関係が成立する。

(7)式と(7)式のどちらがより妥当であるかということは問題
である。水素イオンが関与することは、(7)式反応するイオン種
が酸解離した形であること、酸解離反応は非常に早く平衡が
成立することなどを考えると、(7)式は3分子反応ではなく、まず
\(\text{Mn}^{III} \text{EDTA}^2- + \text{H}^+ \rightarrow \text{Mn}^{III} \text{EDTA}^2- + \text{H}_2 \text{O} \)
の平衡が成立し、その後(7)式のような反応を起こすと考えられ
るので、不均等化反応の律速段階は(7)式にしたがうものと考え
た。

本実験では一次の項として(10)式のみを考慮し、これが完全
に満足される場合、表1のAは \(\text{Mn}^{III}\text{EDTA} \)の濃度によって不変
のはずである。実際は表2に示したように多少変化している。
また、(10)式に一次分解を起こしたものの \(\text{Mn}^{III}\text{EDTA} \)ラジカル
のその後の挙動を示していない。一次の分解反応は単純な(10)式
ではなく、むしろ(5)，(6)式で示されるような機構で進行するの
ではないかと思われるが、測定値の精度が不十分であると \(A \)
の変化が小さいことのために現在のところその機構まで決定
は不可能である。(6)式において、\(k_b/2[k\text{Mn}^{III}\text{EDTA}] \)の
場合は一次の関係を示すが、この関係が満足されていない場合は
\(\text{Mn}^{III}\text{EDTA} \)も反応に関与し、かつ二次の関係を完全には満足し
ない。

(13)式を積分すると(19)式がえられる。

\[
\frac{k_f C - k_f A_f}{k_f} \log \left(\frac{k_f C - k_f A_f}{k_f} \right) + \log x = -\frac{1}{2.303 At + 1}
\]

(19)
ただし，

\[A = \frac{k_0[H^+] + k_2K_a}{(K_a + [H^+]^2)} \]

ここで，設定された値に対してプロットすると直線になり勾配から

\[A = \frac{k_0}{K_a + [H^+]^2} \]

が求まるはずである。表3の値を用いてプロットした結果を表4に示す。

<table>
<thead>
<tr>
<th>[Mn(II)EDTA] (mmol/l)</th>
<th>[Mn(III)EDTA] (mmol/l)</th>
<th>pH</th>
<th>(A_s \times 10^{-4})</th>
<th>(A_t \times 10^{-4})</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.638</td>
<td>4.60</td>
<td>1.13 (\times 1.0)</td>
<td>0.61</td>
<td>0.8 〜 1.0</td>
</tr>
<tr>
<td>0</td>
<td>0.9993</td>
<td>4.60</td>
<td>1.12 (\times 1.0)</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.996</td>
<td>5.04</td>
<td>1.23 (\times 1.0)</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.979</td>
<td>3.90</td>
<td>1.07 (\times 1.0)</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>3.845</td>
<td>5.30</td>
<td>0.835 (\times 0.2)</td>
<td>1.23 (\times 1.0)</td>
<td>0.764</td>
</tr>
<tr>
<td>0.2</td>
<td>0.996</td>
<td>5.30</td>
<td>0.955 (\times 0.2)</td>
<td>0.969 (\times 1.0)</td>
<td>0.764</td>
</tr>
<tr>
<td>1.2</td>
<td>2.996</td>
<td>5.25</td>
<td>0.794 (\times 0.0)</td>
<td>0.854 (\times 1.0)</td>
<td>0.10</td>
</tr>
<tr>
<td>1.2</td>
<td>0.9941</td>
<td>5.26</td>
<td>0.550 (\times 0.0)</td>
<td>0.634 (\times 1.0)</td>
<td>0.751</td>
</tr>
</tbody>
</table>

注a) 表3の値を用いて(19)式の左辺対時間をプロットしたときの勾配から求めたAの値。カッコ内はプロットに用いたfの値。

b) 表3の値から計算したAの値。

c) (19)式のプロットが直線と見なせるfの大きさの範囲。

4) プロットの一例を図4に示した。図4からわかるように(19)式のプロットは一次分解だけと考えたときのプロットよりはるかに直線性を満足し、また、[Mn(III)EDTA]-0の場合にもよい直線性を示す。しかし、初期速度の解析から求めたAと(19)式的勾配から求めたAの間の大きさの差は何えるか明らかでないように述べたように、Mn(III)EDTAによってAが異なること、fの大きさが不明であることなどに原因があると考えられる。

Kjeldahl digestion の化学反応に関する実験的考察*1, *2
(昭和43年8月1日受理)
森田弥左衛門・小暮幸全*3

Kjeldahl法をすべての有機塩素化合物の窒素分析に適するように改善するため、もっとも重要な試料の分解における化学反応について実験を行ない、つきの結果を得た。

(i) 熱処理試料で有機塩素化合物を分解した場合、塩化の消費量(\(x \))と試料の量(\(W \))の間には次式が成立する。

\[x/W = K_0a/K_1 \]

式中のK_0は与えられた化合物の組成分から計算される定数で、またaは個々の化合物の分解反応速度に依存する因子である。このK_1を測定することによって分解の反応速度が推定でき、かつKjeldahl法その化合物の適用の可否を論じる。(ii) 分解における塩酸消費量(\(x \))とアンモニア生成量(\(y \))の相互関係によって、アンモニアの生成反応あるいは分解過程の反応を推定する。すなわち、トリウムおよび酸アシド類は酸加水分解反応で、アンモニア生成パサトロ化合物、アソ化合物および複雑塩化物などは酸化反応で、それぞれアンモニアを生成する。またヒドラジン類は分解の初期に脱アミノ化反応をともなる。

(iii) 従来適用が不明確であった芳香族エトロ、アソおよびヒドラジン化合物については、それらがメチル基、アミノ基あるいは水酸基などの薬理供与基を有する場合にはKjeldahl法が適用できる。

1 緒 言

Kjeldahl法については、ここで述べるまでもなく、特殊な装置や器具がいらない、操作が簡単で香料に行え、しかも十分な精度があるなどの長有を有している。そのため規格試験法などの公定分析として、あるいは生産工場の品質管理分析に広く活用されている。しかし反面、適用範囲が比較的狭く、Dumas法のようにいかなる塩素化合物にも適用する方法ではない。

そこで、この方法を再検討し、すべての有機塩素化合物の窒素分析に適するように改良すべく、もっとも重要な部分である