とアルニンの間である。ベンジルアルコールを0.5%溶液に入るとアンモニアがピークが重なるが、0.1%入るとアンモニアの直後に出される。かつこの条件でトリプトファンはアルニンと分離するのでトリプトファン定量を同時に行なえる（表8）。

表8 ジプロムチオンとジョードチオンの回収率

<table>
<thead>
<tr>
<th>加水分解条件</th>
<th>ジプロムチオン（%）</th>
<th>ジプロムチオン（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5N NaOH, 16hr, デンプンなし</td>
<td>83.5</td>
<td>92.5</td>
</tr>
<tr>
<td>2.5N NaOH, 16hr, デンプン 10mg</td>
<td>96.5</td>
<td>96.5</td>
</tr>
<tr>
<td>6N HCl, 16hr</td>
<td>1.4</td>
<td>40.3</td>
</tr>
</tbody>
</table>

注a) 収束濃液したもの。
b) 蒸気冷凝したもの。

4 考察

Rayらは加水分解用の容器として耐熱性ポリエチレンの遠心器用チューブを用いている。Joriらは石英製の容器を使用している。著者らもはじめは高反発ポリエチレンの遠心器用チューブを用いたが、気密性が悪く、また反復使用に耐え得なかったので図1に示すような内厚のチタン製の容器を用作した。

コンニャクグルコマンナンの酵素分解

コニャクグルコマンナンをTrichoderma virideの産するセルラーゼによって加水分解し、5種のオリゴ糖を単離した。これららのうち、オノバイド糖3種の構造を酸亜硝分解、過剰酸酸化、水酸化ホウ素ナトリウム還元など併用することによって決定した。

その結果これら3種のオリゴ糖はそれぞれD-マンノピラノシルβ(1→4)D-マンノピラノシルβ(1→4)D-グルコピラノースおよびD-マンノピラノシルβ(1→4)D-マンノピラノシルβ(1→4)D-グルコピラノース способであることがわかった。オリゴ糖の構成およびコンニャクグルコマンナン中のグルコースとマンノースのモル比(2:3)からこのマンナンがつくったようなユニットのくり返しで構成されているものと推定した。

(1) T. Ohtsuki, Acta Phytochim. (Jap.), 4, No1, 1(1928)。
(2) M. Mayeda, J. Biochem. (Tokyo), 1, 131(1922)。

性もよい。

メチオニンスルホキドの定量についてはNeumannらの方法でクロマトグラフィーに付し前の試料は2.3に述べた方法の試料の2倍以上のイオン強度である。Joriビルドなどがメチオニンスルホキドの位置に分離されて有害とするものと考えられ、2.3の方法で分析した例では未反応はメチオニンスルホキドより前に溶出される。

トリプトファンについては過剰の水を用いて塩酸加水分解して回収率82%~91%の結果を得ているが、やはりタンパクの種類、チオ基の量などの影響が回収率によっている。

ジプロムチオン、ジードチオンなどの精製方法は、トリプトファン、ジョードチオンなどの定量に有効であり、またタンパク質の加水分解条件としては2.5N水酸化ナトリウム、110℃で16時間以上が適用できると考えられる。メチオニンスルホキド、ジードチオンを含むタンパク質を酸分解法で定量すると、表1.8に示すようにそれぞれメチオニン、チオチオニンに変化するので、主に含んでいるメチオニン、チオチオニンを定量するには、やはり本報告に述べたアルカリ加水分解法で定量することが必要である。

(1970年4月、日本化学会第23年集講演)
などを併用して、コンニャクマンナンの構造を再検討した。そしてコンニャクマンナン中のマンノースとグルコースとの比が 3:2 で、1,4-結合によって主鎖を形成しており、一部をキシロース残基の C4-位で分岐した側鎖をもつ多糖であることを報告している。

この研究はコンニャクマンナンの構造を酵素分解法によって検索するための一例として示されていると解釈される。主鎖に含まれるグルコースとマンノースの比が 3:2 で、1,4-結合を基軸として構造が形成されている。一部はキシロース残基が C4-位で分岐していることが示されている。

2 実験方法および結果

2.1 ペーパークロマトグラフィー

東洋紡紙 No. 53 を用い、液層法によって行なった。

2.2 通じての酵素分解

0.05 N メタノール溶液 (pH 4, 酸化水酸化還元波を) を用い、0-3°C で酸化して大。過ヨウ素酸素濃度は Fleurry 法によって定量した。

2.3 細菌

2.3.1 セルラーーゼ セルラーーゼとして Trichoderma viride の細菌を酵素質をつぼげのように酵素化して用いた。

メタノール 10 ml の水に溶解し、不溶物を加熱して除去した。上清に水を加えて 500 ml とし、これに硫酸アンモニウムを加えて 0.3 酸化した。生成した沈殿を遠心除去し、上清にさらに硫酸アンモニウムを加えて 0.8 酸化した。生成した沈殿を遠心分離して水 200 ml に溶解した。得られた酵素溶液を動

2.3.2 酵素活性の測定: 1% CMC 水溶液 1 ml に 0.1N 磷酸

塩酸溶液 (pH 4) 2 ml と酵素溶液水 1 ml を加え、40°C で 30 分間反応させ、生成した還元糖が Somogyi-Nelson 法によって酵素活性度を算出した。

2.4 コンニャクグルコースの精製

2.4.1 コンニャク糊からグルコースの分離: 市販コンニャク粉 50 g を水酸化ナトリウム 5 に溶解し、懸濁してから FeHLing 液 4 を少しずつ加えた。生成した青色酸紅液を沈殿を遠心分離し、FeHLing 液 5 を加えた。生成した沈殿を 5°C の水に分散させ、冷 2N 硫酸を加えて反応させ、20°C の 95%
に精製 KMG 1g とセルローゼ 50 mg を加えて 40℃でふり混ぜた。1, 3, 6, 12 および 24 時間後にそれぞれ 10 ml ずつを放液し、沸騰水浴中で 10 分間加熱した。生じた沈殿を別し、放置中の生成オリゴ糖をベーパークロマトグラフィーによって分離したのち、硝酸銀で発色させ、テントレーターによって吸光度を測定した。

図 1 においてオリゴ糖 4 種（オリゴ糖 A: $R_0 = 0.62$, オリゴ糖 B: $R_0 = 0.46$, オリゴ糖 C: $R_0 = 0.20$, オリゴ糖 D: $R_0 = 0.07$) の生成経時変化を示す。

つぎに活性炭（和光純薬クロマトグラフィー用）65g とセラライ 545（和光純薬）65g を混合し、常法によって活性化したのち、直径 3.8cm のカラムにつめた。これに少量の水に溶解させた加水分解物を加え、1.7 l の水で溶出した。つぎで 3, 4, 5, 7.5, 10, 12.5, 15, 17.5, 20 および 25% エタノール各 500 ml で順次溶出し、最後に 50% エタノール 2000 ml で溶出した。溶出液 1: 300 ml ずつの画分にわせて採取し、濃縮減圧乾燥を行なった。それぞれの画分の収量、ベーパークロマトグラムを表 2 および図 3 に示す。

<table>
<thead>
<tr>
<th>画分</th>
<th>蒸留液のアルコール濃度 (%)</th>
<th>溶出液量 (ml)</th>
<th>Molisch 反応</th>
<th>収量 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1100</td>
<td>+</td>
<td>1369</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>300</td>
<td>±</td>
<td>149</td>
</tr>
<tr>
<td>3</td>
<td>3～4</td>
<td>300</td>
<td>+</td>
<td>341</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>300</td>
<td>±</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>5～7.5</td>
<td>300</td>
<td>±</td>
<td>346</td>
</tr>
<tr>
<td>7</td>
<td>7.5～10</td>
<td>300</td>
<td>+</td>
<td>248</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>300</td>
<td>+</td>
<td>274</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>300</td>
<td>+</td>
<td>166</td>
</tr>
<tr>
<td>10</td>
<td>10～12.5</td>
<td>300</td>
<td>+</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>12.5</td>
<td>300</td>
<td>+</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>12.5～15</td>
<td>300</td>
<td>+</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>300</td>
<td>+</td>
<td>143</td>
</tr>
<tr>
<td>15</td>
<td>15～20</td>
<td>300</td>
<td>+</td>
<td>121</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>300</td>
<td>+</td>
<td>25</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>300</td>
<td>+</td>
<td>116</td>
</tr>
<tr>
<td>18</td>
<td>50</td>
<td>3000</td>
<td>-</td>
<td>330</td>
</tr>
</tbody>
</table>

図 2 コンニャクグロマンナン酵素分解物の二次元ベーパークロマトグラム

図 3 活性炭セラライトカラムクロマトグラフィーによる 各画分のベーパークロマトグラフィー

各オリゴ糖の生成量は 6 時間後はほぼ最大量に達し、以後 12 時間後、24 時間後においてもほとんど変化が見られなかった。

2.6.2 酵素加水分解物からオリゴ糖の採取: 0.1 mol/l 稀酸塩

溶液（pH 4.0）500 ml に精製 KMG 10g、セルローゼ 50 mg を加え、40℃で 8 時間ふり混ぜた。反応液を沸騰水浴上で 10 分間加熱したのち別し、反応液を濃縮してシリップ状にした。さらに減圧乾燥して白色粉末 9.6g をえた。

この白色粉末は図 2 のベーパークロマトグラムに示すように少、にくとも 7 種類のオリゴ糖を含んでいた。

<table>
<thead>
<tr>
<th>画分番号</th>
<th>各画分のベーパークロマトグラフィー</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>活性炭 A、下駄糖、発色: 硝酸銀</td>
</tr>
<tr>
<td>1</td>
<td>主生成物の R_0 値、マンノース: 1.3, グルコース: 1.0, オリゴ糖 A: 0.45, オリゴ糖 B: 0.28, オリゴ糖 C: 0.1, オリゴ糖 E: 0.12</td>
</tr>
</tbody>
</table>

図 2 コンニャクグロマンナン酵素分解物の二次元ベーパークロマトグラム
オリゴ糖AおよびB 1 mol はそれぞれ4 mol の遊離酸を消費するものと思われた。またセロビオースの場合と比較して初期の遊離酸消費速度が大きかったことから、これらオリゴ糖は好気形の酵素触媒をもつものと考えられた。

以上の結果からオリゴ糖Aは ドマンピラノシルβ(1→4)-マンノピラノーソあるいは、オリゴ糖Bは ドマンピラノシルβ(1→4)-D-グルコピラノーソであることがわかった。

2.7.2 オリゴ糖Cの構造

（1） 酢酸加水分解および遊離酸加水分解: 2.7.1 の場合と同様の条件下オリゴ糖CおよびBを 2 種類であり、C, E は 3 種類、D は 4 種類であると思われた。

2.7.1 オリゴ糖AおよびBの構造: オリゴ糖Aは mp 185〜188℃、[α]D = -6.4°〜-5°（濃度 10%，水中）、オリゴ糖Bは mp 194〜196℃、[α]D = -27°〜-19°（濃度 10%，水中）を示した。これらオリゴ糖についてさらに遊離酸加水分解および遊離酸加水分解を行なってその構造を推定した。

（1） 酢酸加水分解: オリゴ糖AおよびBそれぞれ50 mg を 1N 硫酸中に溶解し、沸騰水浴上で6時間加熱した。冷却後蒸発をとし、生じた硫酸バリウムをろ別した。得られた硫酸についてベーパーコロマトラフィー（薄層A）を行なったところオリゴ糖Aではマンノースのみを認め、オリゴ糖Bではグロコースを認めた。このさいのマンノースとグロコースの比は 1:1であった。またオリゴ糖Bを水素化ホウ素ナトリウムによって還元したのち1N 硫酸で加水分解し、ベーパーコロマトラフィーを行なったところオリゴ糖Aではマンノースのみを認め、オリゴ糖Cおよびオリゴ糖Bが生成していることが認められた。

またオリゴ糖A,B,Cの赤外吸収スペクトルを測定したところ897,896,895cm⁻¹ にそれぞれ％ 糖に起因するとと思われる吸収が見られた。

以上の結果からオリゴ糖Cは マンノピラノシルβ(1→4)-マンノピラノシルβ(1→4)-D-グルコピラノーソであることがわかった。

3 考 察

従来Smithらの研究では、コンニャクグルコンマンのアメーリックな構造についての知見がほとんど得られていなかったが、以上の実験によってこのマンノースがカルボンゲルで分解されることが初めて明らかになった。また単離されたオリゴ糖もβ(1→4)結合に終に結合していることも考え合わせ、コンニャクグルコンマンの糖組成の総合は大体β(1→4)であると思われる。

またこのマンノースを構成しているマンノースとグルコースの比が 3:2であること、およびオリゴ糖A, B, C の構造を考慮するとコンニャクグルコンマンの構造として図5の(1), (2)が考えられる。一方、松田ら159はコンニャクグルコンマンの酸部
分加水分解によってグルコーラミン₁(4→4)グルコーラミン₁(1→4)マンノピラニ化が生成することを報告しているので、
コンパックグルマンナンの構造としては、[1]を考えるのが妥当と思われる。
また単離したオリゴ糖のうち、オリゴ糖Eはペーパークロマトグラフィーの \(R_0 \) 値から3糖類と思われ、酸加水分解の結果、
マンノースのみを与えたのでマンノトリオースと考えられが、
容易に結晶化しなかったので詳細は造構造については検討するにいたらなかったが、オリゴ糖Eがマンノトリオースと考えられ、コ
コンパックグルマンナンの構造として[1]式の推定が支持される
ものである。

ハロゲン化水素-ジメチルスルホキシドによるフェノチアジン類のハロゲン化反応

(昭和45年6月22日受理)
辻野 陽一*3・内藤 命彦*4・杉田 実男*5

フェノチアジンのベンゼン溶液にジメチルスルホキシド(DMSO)溶液による
フェノチアジン類のハロゲン化反応について報告したが、その場合フェ
ノチアジンのヨウ素化合物の生成は認められず、フェノチアジン
類のヨウ素化合物のみが得られた。しかし、後者生成はフェノ
チアジン核へのヨウ素の親電子置換反応によるものではない、ハ
ロゲン化で生成したフェノチアジン類のキノイミク核へのヨウ
素化合物の付加反応が関与しているものと推定した。そこで、これ
らの反応を明らかにするために、DMSO 中におけるフェノチアジ
ン類のハロゲン化反応について検討するにとどめ、第2報で得
られたヨードフェノチアジン類のヨウ素置換基の位置決定を行
った。

フェノチアジン[1]の塩素化については、古くから多数の研究
例があり、大別すると、（1）塩素による方法、（2）塩素と
オニールの塩化する方法、または塩化リビリによる方法およ
び、（3）フェノチアジン-5-オキシドと塩素による方法（過塩素
化）がある。また、フェノチアジンのチオシアノ化について
はチオシアノ酸塩と塩素による方法が報告されている。

著者らはまず DMSO 中で[1]と塩素を塩素との反応を試みた
が、塩素化重合とハロゲン化が同時に起こりきわめて分離困難な複
雑な生成物を与えた。ところが、塩素のかわりに塩化水素酸を用い
ると、容易に塩素化が起こることを新しく見いただした。さらに、
類似の方法でチオシアノ化物の合成法を確立した。この反応を
考察するため、これと関連した反応としてフェノチアジン-5-オ
キシドの自由基ハロゲン化化による過塩素化および脱ハロゲン
化反応をとりあげ検討した。

2.1 ハロゲン化反応

\[
\begin{align*}
\text{DMSO} & \quad \text{HCl} \\
\text{X} & \quad \text{Y} \\
\end{align*}
\]

\[
\begin{align*}
[1] & \quad X = S, \quad X_1 = X_2 = H \\
[2] & \quad X = S, \quad X_1 = C_1, \quad X_2 = \text{Cl} \\
[3] & \quad X = S, \quad X_1 = H, \quad X_2 = \text{Cl} \\
[4] & \quad X = \text{Se}, \quad X_1 = X_2 = \text{H} \\
\end{align*}
\]

フェノチアジン誇導体の DMSO 溶液に塩化水素を導入すると、塩素で塩素化が起こる、10%の DMSO を含むベンゼンに
（1）を 20〜30°Cで溶解して、10 モル比の塩化水素ガスを吸収させ
てから、40°Cに 0.5〜1時間あつと、収率で 3.7-ジクロル