図 1 オイガコースと塩酸アミンとの反応模式

図の反応模式を説明すると、まずオイガコースが塩酸アミンと反応してカルボニル化合物を生成する。次に、この化合物は内部脱水反応を経て、アミン化合物を生成する。この反応は、多核金属化合物の合成に用いられる重要な反応である。

1 緒 言

前報の研究において、オイガコースの前駆体であるオイガコース塩基の存在を確認し、さらに、この化合物は、特に、金属有機化合物の合成において重要な役割を果たすものと考えられる。
2 結果と考察

過剰の酢酸アミド化合物を溶媒(1)とペンゼン-ペンゼン中でCope-Knoevenagel 反応を試みると、期待した生成物を得られず、mp 282-284℃の結晶が得られた(2a)。[2a]の元素分析、赤外吸収スペクトラルおよび核磁気共鳴スペクトル(CHCl₃: δ 7.60 ppm, 結構(2b)を得た。4-ベンズアミノ-2-イミノ-4-チアゾリノン(1)が得られた。以上

以上の結果から(3a)および(2a)の共鳴体である5-ペンツリデン-3-メチル-2,4-チアゾリノン(5a)が得られた。以上

以上の結果から(3a)および(2a)の共鳴体である5-ペンツリデン-3-メチル-2,4-チアゾリノン(5a)が得られた。以上
外吸収スペクトルおよび核磁気共鳴スペクトル（C6H5: 7.65 ppm, CH: 8.35 ppm, (CH3)2N: 3.65, 3.70 ppm)によって推定した。文献9によると、(6 a)の融点は 90-91℃であり、実験で得た6 aの融点 (182-183℃) がかなりの差異がみられた。そこで文献記載と比較した結果、(6 a)と同構したところ182-183℃の熔点を示し、混溶試験を試みた結果、融点低下を示す。また外吸収スペクトルおよび核磁気共鳴スペクトルを比較検討したが差異は認められなかった。したがって文献記載の(6 a)の融点は誤りであることが判明した。他方(6 a)を1%水酸化ナトリウムで加水分解すると(6 a)が得られた。他の脂肪族ニアミンおよび環状アミン(マルホルン、ピラジン)においても同様の結果を得たので表 3. 4 および5に示す。反応における生成物を確認し、ベンゼン-ベンゼンという第ニアミンの場合に同様に考えられる。また芳香族アミン(ジフェニルアミン、メチレンアミン)についても同様の反応を試みたが、これの進行を認めなかった。このことは芳香族アミンは脂肪族アミンより吸収性が弱いことから起因するのではないかと思われる。

3 実験

記載の化合物の融点は、すべて未測定である。核磁気共鳴スペクトルは日本電子 TM-300型核磁気共鳴装置を使用し、トリフルオロ酢酸溶液中で TMS を内部標準物質として測定した。赤外吸収スペクトルは、島津 IR-27 G型赤外分光光度計を用いて、nujol 中で測定した。

3.1 5-置換ペンゼンジンニ-2-イミノ-4-チアゾリシノ[2 a- h]の合成

等モル (0.02 mol) の [1] および芳香族アソルヒドと 0.025 mol の酸素アノニウムを酸化・ベンゼン 20 ml の混合溶媒に加え、水酸化ナトリウムを加えたフラスコ中にて、二酸化炭素中で、水の生成が止むまで反応させた。その後、ピロリンをエタノールで洗浄し、さらに水洗した。乾燥した結晶をエタノールで再結晶し、結晶をエタノールで再結晶した。

3.2 5-置換ペンゼンジンニ-2-アルキルイミノ-4-チアゾリシノ[2 i- m]の合成

水分解放をこえたフラスコに酸化・ベンゼン 20 ml を入れ、つぎに 10℃以下で加水分解を行った。なおモル (0.02 mol) を反応させる(5)および芳香族アシルヒドを加える、水の生成が止むまで反応させた。冷却したのち、エタノール (50 ml) を加え、水洗して放置すると結晶が析出した。結晶を再結晶、適当な溶媒(表 4. 5)で再結晶し

3.3 5-置換ペンゼンジンニ-3-アルキル-2-イミノ-4-チアゾリシノ[2 a- h]の合成

3.3.1 (2 a- b) の合成: エタノール 20 ml に 3% メタクリルアミン水溶液 2.7 g および芳香アルデヒド (0.02 mol) を加え、かきませながら 10℃以下で (1) (0.02 mol) を滴下した。油凝をかきたち、冷却を止め 60-70℃でさらに 4-5 時間加熱し、つぎに対応混合溶液を冷室に放置すると、結晶が析出した。結晶をエタノールで再結晶した。

3.3.2 (2 e- e) HCl の合成: 等モル (0.02 mol) の (1) およびベンズアルデヒドと第ニアミン (0.025 mol) を 3.1.1 と同様に反応させたのも、酸化 (2N, 15 ml) を 5℃以下で加えて塩酸として結晶を析出した。反応班の合同で、酸洗し、酸和物をエタノールで再結晶した。

3.4 5-置換ペンゼンジンニ-2-ニアミノ-2-チアゾリシノ-[4- (6), (7), (8)] の合成

(1) が芳香族アルデヒドおよびニアミンニーコ第ニアミンを 3.2 的両反応条件下で反応させたもの。反応混合溶液をエタノール (50 ml) を加えて放置すると、(6) の結晶を得た。また芳香族アミン(モノホルン、ピラジン)を上記反応に反応させて放置すると(7)または(8)の結晶が得られた。再結晶溶媒は表 3. 4 および5に示した。

3.5 (2 a)および(2 i)の加水分解

沸騰溶液 10 ml、エタノール 20 ml の混合溶液に (2 a) (0.01 mol)を加えて 5 時間放置した。加水分解した結晶を過量のエタノールに放置すると結晶が析出した。反応生成物の生成と考えられた。収率 82%, mp 239-240℃(文献9 242℃)。

分析値 C 56.62%, H 3.49%, N 6.90%, S 15.61% C16H10O6N3S としての

計算値 C 56.54%, H 3.34%, N 6.83%, S 15.59%

実効吸収スペクトル (cm-1): 3150 w (SH), 1740 m (C=O), 1690 s (C=O), 1610 m (C=O), 9.55 br (NH)

さらにに同様に条件で加水分解を行った。収率 68%。

3.6 (3 a)の加水分解

3.5 と同じ条件下で加水分解を行った。反応生成物をエタノールで再結晶した。収率 58%, mp 134-135℃。

分析値 C 60.38%, H 4.20%, N 6.39%, S 14.56%

実効吸収スペクトル (ppm): δ 7.50 s (CH3), 8.10 s (CH), 7.55 br (NH)

(2 i)も同様に条件で加水分解を行った。収率 68%。

表 1

<table>
<thead>
<tr>
<th>化合物</th>
<th>R</th>
<th>R'</th>
<th>反応時間（hr）</th>
<th>収率（％）</th>
<th>融点（分解放点）（℃）</th>
<th>分子式</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2a)</td>
<td>H</td>
<td>H</td>
<td>4</td>
<td>56</td>
<td>(282~284)</td>
<td>C₅H₇NO₃S</td>
</tr>
<tr>
<td>(2b)</td>
<td>H</td>
<td>o-CH₃</td>
<td>5</td>
<td>48</td>
<td>(259~261)</td>
<td>C₅H₇NO₃S</td>
</tr>
<tr>
<td>(2c)</td>
<td>H</td>
<td>p-CH₃</td>
<td>4</td>
<td>52</td>
<td>(283~287)</td>
<td>C₅H₇NO₃S</td>
</tr>
<tr>
<td>(2d)</td>
<td>H</td>
<td>o-Cl</td>
<td>5</td>
<td>55</td>
<td>(284~286)</td>
<td>C₅H₇NO₃SCl</td>
</tr>
<tr>
<td>(2e)</td>
<td>H</td>
<td>m-NO₂</td>
<td>4</td>
<td>50</td>
<td>(261~263)</td>
<td>C₅H₇NO₃S</td>
</tr>
<tr>
<td>(2f)</td>
<td>H</td>
<td>p-NO₂</td>
<td>4</td>
<td>53</td>
<td>(303~305)</td>
<td>C₅H₇NO₃S</td>
</tr>
<tr>
<td>(2g)</td>
<td>H</td>
<td>p-CH₃</td>
<td>5</td>
<td>58</td>
<td>(288~290)</td>
<td>C₅H₇NO₃S</td>
</tr>
<tr>
<td>(2h)</td>
<td>H</td>
<td>p-N(CH₃)₂</td>
<td>4</td>
<td>47</td>
<td>(259~261)</td>
<td>C₅H₇NO₃S</td>
</tr>
<tr>
<td>(2i)</td>
<td>CH₃</td>
<td>H</td>
<td>6</td>
<td>25</td>
<td>(266~227)</td>
<td>C₅H₇NO₃S</td>
</tr>
<tr>
<td>(2j)</td>
<td>C₂H₅</td>
<td>H</td>
<td>7</td>
<td>51</td>
<td>(168~169)</td>
<td>C₆H₁₄NO₃S</td>
</tr>
<tr>
<td>(2k)</td>
<td>n-C₃H₇</td>
<td>H</td>
<td>7</td>
<td>45</td>
<td>(177~178)</td>
<td>C₇H₁₄NO₃S</td>
</tr>
<tr>
<td>(2l)</td>
<td>i-C₃H₇</td>
<td>H</td>
<td>8</td>
<td>50</td>
<td>(220~222)</td>
<td>C₇H₁₄NO₃S</td>
</tr>
<tr>
<td>(2m)</td>
<td>CH₃</td>
<td>p-CH₃</td>
<td>10</td>
<td>30</td>
<td>(228~229)</td>
<td>C₇H₁₄NO₃S</td>
</tr>
<tr>
<td>(2n)</td>
<td>n-C₃H₇</td>
<td>p-NO₂</td>
<td>6</td>
<td>40</td>
<td>(276~278)</td>
<td>C₇H₁₄NO₃S</td>
</tr>
</tbody>
</table>

注: 本实验品: *エタノール, **ベンゼン, ***醋酸, 無印ジメチルホルミド。
 a）文献値*¹ 280℃（融点）。
 b）文献値*² 264.5℃（融点）。c）文献値*³ 304℃（分解放点）。

表 2

<table>
<thead>
<tr>
<th>化合物</th>
<th>R</th>
<th>R'</th>
<th>反応時間（hr）</th>
<th>収率（％）</th>
<th>融点（℃）</th>
<th>分子式</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3a)</td>
<td>CH₃</td>
<td>H</td>
<td>4</td>
<td>54</td>
<td>160~161</td>
<td>C₆H₈O₃S</td>
</tr>
<tr>
<td>(3b)</td>
<td>CH₃</td>
<td>O-CH₃</td>
<td>5</td>
<td>48</td>
<td>182~183</td>
<td>C₆H₈O₃S</td>
</tr>
<tr>
<td>(3c)</td>
<td>HCl</td>
<td>C₂H₅</td>
<td>8</td>
<td>28</td>
<td>222~223</td>
<td>C₅H₈O₃SHCl</td>
</tr>
<tr>
<td>(3d)</td>
<td>HCl</td>
<td>n-C₄H₉</td>
<td>8</td>
<td>25</td>
<td>255~256</td>
<td>C₅H₈O₃SHCl</td>
</tr>
<tr>
<td>(3e)</td>
<td>HCl</td>
<td>n-C₄H₉</td>
<td>8</td>
<td>29</td>
<td>202~203</td>
<td>C₅H₈O₃SHCl</td>
</tr>
</tbody>
</table>

注: 本实验品: エタノール。

表 3

<table>
<thead>
<tr>
<th>化合物</th>
<th>R</th>
<th>R'</th>
<th>反応時間（hr）</th>
<th>再結晶溶媒</th>
<th>収率（％）</th>
<th>融点（℃）</th>
<th>分子式</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6a)</td>
<td>CH₃</td>
<td>H</td>
<td>7</td>
<td>エタノール</td>
<td>64</td>
<td>182~183</td>
<td>C₆H₈O₃S</td>
</tr>
<tr>
<td>(6b)</td>
<td>CH₃</td>
<td>o-CH₃</td>
<td>6</td>
<td>酌酸</td>
<td>61</td>
<td>217~218</td>
<td>C₆H₈O₃N₂S</td>
</tr>
<tr>
<td>(6c)</td>
<td>CH₃</td>
<td>p-N(CH₃)₂</td>
<td>5</td>
<td>エタノール+酢酸</td>
<td>55</td>
<td>225~226</td>
<td>C₆H₈O₃N₂S</td>
</tr>
<tr>
<td>(6d)</td>
<td>CH₃</td>
<td>p-Cl</td>
<td>5</td>
<td>エタノール</td>
<td>57</td>
<td>215~216</td>
<td>C₆H₈O₃SCl</td>
</tr>
<tr>
<td>(6e)</td>
<td>CH₃</td>
<td>m-NO₂</td>
<td>5</td>
<td>酢酸</td>
<td>54</td>
<td>221~222</td>
<td>C₆H₈O₃N₂S</td>
</tr>
<tr>
<td>(6f)</td>
<td>CH₃</td>
<td>p-CH₂</td>
<td>5</td>
<td>エタノール</td>
<td>63</td>
<td>205~206</td>
<td>C₆H₈O₃N₂S</td>
</tr>
<tr>
<td>(6g)</td>
<td>C₂H₅</td>
<td>H</td>
<td>6</td>
<td>ベンゼン</td>
<td>59</td>
<td>102~103</td>
<td>C₇H₁₄O₃N₂S</td>
</tr>
<tr>
<td>(6h)</td>
<td>C₂H₅</td>
<td>p-CH₃</td>
<td>6</td>
<td>エタノール</td>
<td>61</td>
<td>132~134</td>
<td>C₇H₁₄O₃N₂S</td>
</tr>
<tr>
<td>(6i)</td>
<td>n-C₃H₇</td>
<td>o-CH₃</td>
<td>6</td>
<td>エタノール</td>
<td>55</td>
<td>136~137</td>
<td>C₇H₁₄O₃N₂S</td>
</tr>
<tr>
<td>(6j)</td>
<td>n-C₃H₇</td>
<td>H</td>
<td>6</td>
<td>エタノール+水</td>
<td>60</td>
<td>139~140</td>
<td>C₇H₁₄O₃N₂S</td>
</tr>
</tbody>
</table>

注: a）文献値*⁴ 90~91℃。
 b）文献値*⁵ 96~97℃。
表 1

<table>
<thead>
<tr>
<th>分析値 (%)</th>
<th>計算値 (%)</th>
<th>赤外吸収スペクトラル (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3200 w</td>
</tr>
<tr>
<td>58.19</td>
<td>3.89</td>
<td>13.49</td>
</tr>
<tr>
<td>56.12</td>
<td>4.11</td>
<td>11.84</td>
</tr>
<tr>
<td>56.28</td>
<td>4.48</td>
<td>11.64</td>
</tr>
<tr>
<td>50.01</td>
<td>2.78</td>
<td>11.52</td>
</tr>
<tr>
<td>48.10</td>
<td>2.87</td>
<td>16.44</td>
</tr>
<tr>
<td>48.20</td>
<td>2.97</td>
<td>16.86</td>
</tr>
<tr>
<td>60.11</td>
<td>4.31</td>
<td>12.64</td>
</tr>
<tr>
<td>57.92</td>
<td>4.99</td>
<td>16.79</td>
</tr>
<tr>
<td>59.94</td>
<td>4.71</td>
<td>13.00</td>
</tr>
<tr>
<td>62.89</td>
<td>5.29</td>
<td>12.72</td>
</tr>
<tr>
<td>63.58</td>
<td>5.59</td>
<td>11.23</td>
</tr>
<tr>
<td>63.00</td>
<td>5.77</td>
<td>11.40</td>
</tr>
<tr>
<td>58.54</td>
<td>4.89</td>
<td>11.34</td>
</tr>
<tr>
<td>53.98</td>
<td>4.64</td>
<td>14.82</td>
</tr>
</tbody>
</table>

表 2

<table>
<thead>
<tr>
<th>分析値 (%)</th>
<th>計算値 (%)</th>
<th>赤外吸収スペクトラル (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3300 m</td>
</tr>
<tr>
<td>60.64</td>
<td>4.61</td>
<td>12.61</td>
</tr>
<tr>
<td>58.34</td>
<td>5.05</td>
<td>11.34</td>
</tr>
<tr>
<td>53.60</td>
<td>4.50</td>
<td>10.81</td>
</tr>
<tr>
<td>55.09</td>
<td>5.20</td>
<td>9.55</td>
</tr>
<tr>
<td>57.00</td>
<td>5.82</td>
<td>9.46</td>
</tr>
</tbody>
</table>

表 3

<table>
<thead>
<tr>
<th>分析値 (%)</th>
<th>計算値 (%)</th>
<th>赤外吸収スペクトラル (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1680 s</td>
</tr>
<tr>
<td>62.10</td>
<td>5.08</td>
<td>12.10</td>
</tr>
<tr>
<td>59.58</td>
<td>5.10</td>
<td>10.66</td>
</tr>
<tr>
<td>60.91</td>
<td>6.28</td>
<td>15.32</td>
</tr>
<tr>
<td>53.99</td>
<td>4.25</td>
<td>10.51</td>
</tr>
<tr>
<td>51.93</td>
<td>3.89</td>
<td>15.18</td>
</tr>
<tr>
<td>63.71</td>
<td>5.56</td>
<td>11.34</td>
</tr>
<tr>
<td>64.48</td>
<td>6.20</td>
<td>10.40</td>
</tr>
<tr>
<td>62.16</td>
<td>6.03</td>
<td>9.39</td>
</tr>
<tr>
<td>62.11</td>
<td>5.31</td>
<td>9.81</td>
</tr>
<tr>
<td>67.00</td>
<td>7.10</td>
<td>9.78</td>
</tr>
</tbody>
</table>
赤外吸収スペクトル (cm⁻¹)：1670 s(νC=O), 1740 s(νC=O),
1600 m(νC=O).

核磁気共鳴スペクトル (ppm)：δ 3.36 s(CH₃), 7.50 s(C₆H₅),
8.05 s(=CH)

3.7 (6 a), (7 a) および (8 a) の加水分解

(6 a) (0.01 mol) を 2% 水酸化ナトリウム水溶液 20 ml に加えて
30 分煮沸したところ、2% 硫酸で中和すると (6 a) の結晶が析出
した。ロ紙の毛でも加水分解した。収率 40%。 (7 a) および
(8 a) も同様に処理した。(7 a) からの収率 28%，(8 a) からの収
率 20%。

3.8 チオシアニンアセチルミド (3) (R = H) の合成

エタノール (50 ml) にモノクロルアセチルミド (0.1 mol) および
チオシアニン酸カリウム (0.1 mol) を加えて、3 時間煮沸したのも冷
室に放置してから、結晶をロ紙。一方、メタノールを加えると
析出しないため前後とあわせて水洗し、エタノールで再結晶した。収率 70%。
mp 114～115℃

分光値 C 31.24%，H 3.50%，N 24.28%

C₅H₄ON₂S としての

計算値 C 31.04%，H 3.48%，N 24.15%

赤外吸収スペクトル (cm⁻¹)：3400 m, 3300 m(νOH), 2150 s(νC=O), 1600 s(νC=O), 1660 s(νC=O)

3.9 2-イミノ-4-チアゾリノン (2') (R = H) の合成

(3) (R = H) (0.01 mol) を 0.1 N 水酸化ナトリウム水溶液 20 ml に加え
て、室温で 4 時間煮沸した後、塩基塩の結晶が生成した。結晶を
ロ紙でエタノールで洗浄した。核生成物の収率 30%，融点 234
～236℃（文献値 233～235℃）。

3.10 2-メチルイミノ-4-チアゾリノン (2') (R = CH₃) の合成

酢酸 5 ml, ベンゼン 20 ml の混合溶液に 30% メチルアミン
水溶液 (2.7 g) を 10℃ 以下で滴下し、酸を再結晶させることに加水分解した。収率 10%。
mp 193～195℃（文献値 210℃）

分光値 C 37.02%，H 4.86%，N 21.46%，S 24.62%

C₆H₆ON₂S としての

計算値 C 36.93%，H 4.65%，N 21.53%，S 24.59%

赤外吸収スペクトル (cm⁻¹)：3200 w(νOH), 1700 m(νC=O)

表 4

<table>
<thead>
<tr>
<th>分析値 (%)</th>
<th>計算値 (%)</th>
<th>赤外吸収スペクトル (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.07</td>
<td>5.85</td>
<td>10.06</td>
</tr>
<tr>
<td>65.13</td>
<td>5.78</td>
<td>13.34</td>
</tr>
<tr>
<td>63.49</td>
<td>4.78</td>
<td>9.27</td>
</tr>
<tr>
<td>58.72</td>
<td>4.73</td>
<td>9.21</td>
</tr>
<tr>
<td>56.80</td>
<td>4.25</td>
<td>13.33</td>
</tr>
<tr>
<td>67.09</td>
<td>6.20</td>
<td>9.91</td>
</tr>
</tbody>
</table>

表 5

<table>
<thead>
<tr>
<th>分析値 (%)</th>
<th>計算値 (%)</th>
<th>赤外吸収スペクトル (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.45</td>
<td>5.34</td>
<td>10.55</td>
</tr>
<tr>
<td>59.34</td>
<td>5.36</td>
<td>9.51</td>
</tr>
<tr>
<td>62.81</td>
<td>5.61</td>
<td>9.93</td>
</tr>
<tr>
<td>54.53</td>
<td>4.37</td>
<td>9.09</td>
</tr>
<tr>
<td>34.76</td>
<td>4.35</td>
<td>9.04</td>
</tr>
<tr>
<td>52.84</td>
<td>4.20</td>
<td>13.20</td>
</tr>
<tr>
<td>60.46</td>
<td>6.09</td>
<td>13.34</td>
</tr>
</tbody>
</table>

1630 m (sC=N)

核磁気共鳴スペクトル (ppm): δ 3.25 s (CH₃), 4.25 s (CH₂)

3.11 3-メチル-2-イミノ-4-チアゾリニオン (3°)(R-CH₃) の合成

エタノール (20 ml) に (CH₃) (0.02 mol) を溶解し、5℃ でかきませ
ながら、30% メチルアミン水溶液 (2.7 g) を滴下すると約 30
分後に結晶が析出した。さらに 1 時間かきませつづけてから放
し、エタノールで再結晶した。収率 64%，mp 142~143°C。

分析値 C 36.90%, H 4.92%, N 21.68%, S 24.62% C₃H₆N₂S としての

計算値 C 36.93%, H 4.65%, N 21.53%, S 24.59%

赤外吸収スペクトル (cm⁻¹): 3220 w (v(NH)), 1710 s (v(C=C)), 1620 s (sC=N)

核磁気共鳴スペクトル (ppm): δ 3.45 s (CH₃), 4.30 s (CH₂)

終わりに本研究に対して種々御指導を賜りました理化学研究所
主任研究員緒川 法先生に深く感謝いたします。