硫黄，一酸化炭素を用いる 0-置換ニトロベンゼン類からのベンゾイミダゾロン、ベンゾオキサゾロンおよびベンゾチアゾロンの合成

(1986年11月6日受理)

宮田敏行**・神戸宜明**・村井真二**・園田昇**
西口郁三・平嶋恒亮

塩基の存在下で硫黄，一酸化炭素および水が反応して以下に示す平衡反応により硫化カルボニルおよび硫化水素を生成する。

\[S + CO \rightleftharpoons \text{ sulfide} \]

\[\text{COS} + \text{H}_2\text{O} \rightleftharpoons (\text{HOCSH}) \rightleftharpoons \text{H}_2\text{S} + \text{CO}_2 \]

このことをを利用して，この系に 2-ニトロアミリン類，2-ニトロフェノール類およびビス(2-ニトロフェノール)ジスルフィドを共存させたところ，それぞれ高収率でベンゾイミダゾロン類，ベンゾオキサゾロン類およびベンゾチアゾロンが得られることを見いだした。

本反応は比較的温和な条件下，一段でニトロ基のアミノ基への還元，カルボニル化および環化反応が起こり，また，反応操作および後処理も容易であることがわかった。

1 緒 言

ベンゾイミダゾロン，ベンゾオキサゾロンおよびベンゾチアゾロン（以下，これらをベンゾチアゾロン類という）は医薬品，農薬および塩基性・耐光性の優れた染料などの中間体として広く用途をもつ化合物であることはよく知られている。

従来，ベンゾチアゾロン類はいずれもアミノ化合物を出発物質としたポルケンあるいは尿素との反応により合成されてきた。

著者らは一酸化炭素利用の一環として硫黄，一酸化炭素，水とニトロベンゼン類との反応を検討した結果，簡便なベンゾチアゾロン類の合成法を完成したのでここに報告する。

すでにアルキルアミンの高圧下での硫黄，一酸化炭素による尿素誘導体の合成が，硫化カルボニルを用いるフェニレンジアミンからのベンゾイミダゾロン合成などが知られているが，いずれもアミノ化合物を出発物質としている。著者らは出発物質に芳香族ニトロ化合物を用いた場合，一段で還元，カルボニル化および環化反応が起こり，生成物としてベンゾチアゾロン類が得られることを見いだした。本報では 2-ニトロアミリン類，2-ニトロフェノール類およびビス(2-ニトロフェノール)ジスルフィドから，それぞれ一段でかつ高収率でベンゾイミダゾロン類，ベンゾオキサゾロン類およびベンゾチアゾロンを合成した結果について述べる。

2 実験

2-1 試薬

2-ニトロアミリン，2-ニトロフェノールおよびそれらの誘導体は市販品をそのまま，あるいは再結晶して使用した。

トリエチアルアミン，テトラヒドロフラン，ベンゼン，N,N-ジメチルホルムアミド，N,N-ジメチルアセトアミド，ビリジン，アセトニトリル，エタノールおよび1,4-ジオキサンは脱水後蒸留精製して用いた。

硫酸（粉末）は市販品を，一酸化炭素は市販パンチ（99.5%）のものを使用した。

2-2 反応方法

出発物質（10 mmol）硫酸（80 mmol，2.56 g），水（30 mmol，0.54 ml），トリエチアルアミン（30 mmol，4.15 ml）および溶媒（20 ml）を内容 100 ml のオートクレープに入れ，一酸化炭素で十分置換後一酸化炭素を 10 kg/cm² に加圧した。80℃で6〜24時間加熱を行ない，反応終了後オートクレープを室温まで冷却し，過剰の一酸化炭素を除いた。反応液から溶媒を留去し，残
留物に1-ブタノール、ジクロロメタンあるいはベンゼンを加え、析出した硫黄を蒸留により除去し、液体を濃縮した。析出物を再結晶により精製し、X線分析により構造確認を行った。また、一部は高速液体クロマトグラフィーにより定量した。

2.3 分析装置
元素分析は理研製CHN コーダー MT-3型を用い、質量分析は日本電子製JMS-07型を用い、赤外分光光度計は島津製435型、また高速液体クロマトグラフは島津製LC-3型を使用した。

2.4 主生成物の分析結果
ベンゾイミダゾロン
mp: 304°305°C (lit. 305°C)
IR (KBr) (cm⁻¹): νNH 3000, νCO 1740
MS m/e: 134 (M⁺)

5-クロロベンゾイミダゾロン
mp: 271°272°C (lit. 270°C)
IR (KBr) cm⁻¹: νCO 1750
MS m/e: 164 (M⁺)

5-メチルベンゾイミダゾロン
mp: 267°268°C
IR (KBr) cm⁻¹: νCO 1760
MS m/e: 180 (M⁺)

5-メトキシペンゾイミダゾロン
mp: >300°C
IR (KBr) cm⁻¹: νCO 1680, νNO 1530, 1350
MS m/e: 151 (M⁺)

5-エトキシペンゾイミダゾロン
mp: >300°C
IR (KBr) cm⁻¹: νNH 3500, 3400, νCO 1690
MS m/e: 149 (M⁺)

5-ブロモペンゾイミダゾロン
mp: >300°C (lit. 300°C)
IR (KBr) cm⁻¹: νCO 1670, νNO 1530, 1350
MS m/e: 179 (M⁺)

5-アミノペンゾイミダゾロン
mp: >300°C (lit. 300°C)
IR (KBr) cm⁻¹: νNH 3500, 3400, νCO 1690
MS m/e: 149 (M⁺)

6) E. Lellmann, E. Wurther, Ann., 228, 221(1885).
8) H. Hager, Ber., 17, 2630(1894).
9) C. Graebe, Ber., 35, 2751(1902).
10) J. Hilbert, Happer-Seylers Zeitschrift, 12, 311(1889).
11) M. Claas, Ber., 45, 1030(1912).
Table 1 Reaction of 2-nitroaniline in various conditions

<table>
<thead>
<tr>
<th>Run</th>
<th>S (mmol)</th>
<th>H₂O (mmol)</th>
<th>Et₃N (mmol)</th>
<th>CO (kg/cm²)</th>
<th>Time (h)</th>
<th>Temp (°C)</th>
<th>Yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>21(16)b</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>0</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>30</td>
<td>60</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td>10</td>
<td>60</td>
<td>10</td>
<td>6</td>
<td>80</td>
<td>9</td>
</tr>
</tbody>
</table>

a) Determined by HPLC.
b) Isolated yield.

Table 2 Reaction of 2-nitroaniline in various solvents

Table 3 Reaction of substituted 2-nitroanilines

Table 2 Reaction of 2-nitroaniline in various solvents

Table 3 Reaction of substituted 2-nitroanilines

3.1-1 種々のベンゾイミダゾロン誘導体の合成: 3.1 で得られた最適条件を用いてベンゾイミダゾロン類の収率および置換基の影響を調べた（表3）。

生成物の単離は主として薄層クロマトグラフィー（メルク社製、シリガル 60 GF254）、溶媒液：ベンゼン-メタノールまたは酢酸-メタノール-ヘキサンにより行なったが、アミノ基をもつ化合物については薄層上で変質し定量的に分離することが困難であったため、生成物を同定確認後高速液体クロマトグラフィー（カラム：25 cm, 4.6 mm, 充填材：東洋曹達 410 LS 5 μ, 移動相：メタノール：水=50：50 vol% , 流速：1.2 ml/min, 検出波長：230 nm, 内部標準物質：3-ニトロフェニル）により定量した。

ジェノラニン類（Run 2, 3）を除いて、きわめて高収率で対応するベンゾイミダゾロン類が得られることを見いたした。
Table 4 Reaction of 2-nitrophenols

<table>
<thead>
<tr>
<th>Run</th>
<th>R</th>
<th>Yield(%) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>CH₃</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>NO₂</td>
<td>91</td>
</tr>
</tbody>
</table>

Substituted 2-nitrophenol: 10 mmol, S: 80 mmol, H₂O: 30 mmol, Et₃N: 30 mmol, CO: 10 kg/cm², Temp: 80°C, Time: 6 h, in THF.

a) Isolated yield.

た、このジニトロアミノ類で4位のニトロ基も同時に還元された5-アミノペンゾイミダゾロンが収率ではあるが生成した。反応条件によってはこの収率向上も可能であると思われる。

3.2 2-ニトロフェノールからのペンゾオキサゾロンの合成

つきに置換-2-ニトロフェノールを出発物質として同様な反応を行なった。すなわち置換-2-ニトロフェノール (10 mmol), 硫酸 (80 mmol), 水 (30 mmol), トリエチルアミン (30 mmol), 一酸化炭素 (10 kg/cm²) およびトリエタンジクロソフラン (20 ml) をオートクレープに入り, 80°C で6時間反応した。同様な処理を行ないリン片状の結晶を得た。結果を表4に示した。

本反応ではほとんど定量的に対応する置換ペンゾオキサゾロンが得られることが見いだした。なお, Run 3 のビニルホスホン基に対してp-位のニトロ基が還元されなかったが, 反応条件によってはその還元も可能であると思われる。

3.3 ピス(2-ニトロフェノール)ジスルフィドからのペンゾチアゾロンの合成

原料のピス(2-ニトロフェノール)ジスルフィドは2-クロリニトロペンゼンと硫化トリウムとの反応により合成した15。

硫黄、トリエチルアミンおよび水の量を種々かえたときのペンゾチアゾロン収率におよぼす影響を調べた（表5, Run 1～6）。

これからの条件は原料 2.5 mmol に対して硫黄: 15 mmol, トリエチルアミン: 15 mmol, 水: 15 mmol および一酸化炭素圧: 10 kg/cm² であると考えられた。また、溶媒による影響についても同時に検討した（Run 7～12）。一般に原料のピス(2-ニトロフェノール)ジスルフィド、硫酸およびペンゾチアゾロンに対し酸和度の大きい溶媒ほど高収率を示すものと考えられる。

3.4 反応機構について

3.4.1 硫化カルボニルおよび硫化水素の生成確認: 硫黄、一酸化炭素、水系で硫化カルボニルおよび硫化水素が生成していることを確認するために以下の実験を行なった。

文献14）にしたがい、チオシアノ酸カリウムと硫黄 (50 wt%) を反応させ硫化カルボニルを精密測定し、気体セルを用いてIR スペクトルを測定した。また、硫化水素は市販ペンゼンから直接採取してIR スペクトルを測定した。

つぎに著者らの系、すなわち硫酸 (80 mmol), トリエチルアミン (30 mmol) およびテトラヒドロピラン (20 ml) をオートクレープに入れ、一酸化炭素圧を 10 kg/cm² として 80°C で2時間反応させ、生成ガスの IR スペクトルを測定した結果、硫化カルボニルに基づく全吸収が確認できた。したがって本系では硫酸カルボニルが生成していると考えられる。つぎに本系に水を加えて反応し、生成ガスの IR スペクトルを測定したが硫化水素に基づく吸収は小さかったことから、トリエチルアミンを含む塩基性の系であるため特有吸収が観測されなかった。しかしこの後処理時大量の硫化水素が発生することから系中では平衡で存在しているものと考えられる。硫化カルボニルが容易に水と反応して硫化水素を生成することはよく知られている15。

3.4.2 反応の経時変化: 2-ニトロフェノリニカルペンゾイミダゾロン合成ならびに2-ニトロフェノールからのペンゾオキサゾロン合成における反応の経時変化を調べた。例として著者の反応の経時変化について述べる。

Table 5 Reaction of bis(2-nitrophenyl) disulfide

<table>
<thead>
<tr>
<th>Run</th>
<th>S (mmol)</th>
<th>H₂O (mmol)</th>
<th>Et₃N (mmol)</th>
<th>CO (kg/cm²)</th>
<th>Solvent (20 ml)</th>
<th>Yield(%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>Tetrahydrofuran</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>Tetrahydrofuran</td>
<td>90 (82) b</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>Tetrahydrofuran</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>30</td>
<td>5</td>
<td>10</td>
<td>Tetrahydrofuran</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>Pyridine</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>Tetrahydrofuran</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>Pyridine</td>
<td>94 (84) b</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>N,N-Dimethylformamide</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>Chloroform</td>
<td>84</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>N,N-Dimethylacetamide</td>
<td>77</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>Benzene</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>10</td>
<td>Triethylamine</td>
<td>68</td>
</tr>
</tbody>
</table>

Bis(2-nitrophenyl) disulfide; 2.5 mmol, Temp: 80°C, Time: 6 h.

a) Determined by HPLC.

b) Isolated yield.

2-エトロアミン（10 mmol）、硫酸（80 mmol）、水（30 mmol）、トリエチラミン（30 mmol）、硫酸化炭素（10 kg/cm²）および
\[N,N\text{-ジメチルアセトアミド (20 ml) } \] をオートクレープ中、80℃
で反応させ、1時間ごとに反応液を試料採取し、高速液体クロマ
トグラフィー（内部標準物質：2-エトロフェノール、2-エトロフ
ェノールの反応の場合は2-エトロアミンを用いた）により定
量した。結果を図1に示した。

これから1,2-ベンゼンジアミンが反応中に生成し、ついでベ
ンゾイミダゾロンとなる逐次反応で進行しているものと考えられ
た。すなわち、1,2-ベンゼンジアミンが中間体として生成し、こ
れが硫酸カルボネルと反応してベンゾイミダゾロンを生成するも
のと考えられる。その中で、1,2-ベンゼンジアミン（10 mmol）、硫酸
（80 mmol）、トリエチラミン（30 mmol）、硫酸化炭素（10 kg/
\[N,N\text{-ジメチルアセトアミド (20 ml) } \] をオートクレ
\[S + CO \rightleftharpoons \text{COS} \] (1)
\[\text{COS} + \text{H}_{2}\text{O} \rightleftharpoons (\text{HOCSH}) \rightleftharpoons \text{H}_{2}\text{S} + \text{CO}_{2} \] (2)

Fig.1 Relation between distribution and reaction-

reaction-time for the reaction of 2-nitroaniline

2-Nitroaniline: 10 mmol, S: 80 mmol, H\textsubscript{2}O: 30
mmol, Et\textsubscript{3}N: 30 mmol, CO: 10 kg/cm2, Temp:
80℃

---: 2-Nitroaniline, ----: Bensimidazolone,
△-: 1,2-Diaminobenzene

3.4.3 反応機構：2-エトロアミンおよび2-エトロフェノ
ールの反応はつぎののような機構で進行していると考えられた。
すなわち、式（3）において2-エトロアミンが系中で生成す
る硫酸化水素またはそのアミオンにより環化され1,2-ベンゼン
ジアミンとなり、一つのアミノ基に硫酸カルボネルが反応し
て(2-アミノフェノール）カルボスルホン酸を生成し、その不
可避水素脱離が起こりベンゾイミダゾロンを与える。このさい、(2-アミ
ノフェノール)カルボスルホン酸の脱離を試みたがこのものの生成を
裏づける証拠は得られなかった。しかし、この化合物は分子内
の1位にアミノ基をもつことがアミノ基による分子内求核攻撃
がきわめて容易であり、ただちに環化してベンゾイミダゾロンに
いたるものと考えられた。

つぎの式（4）において硫酸カルボネルが2-アミノフェノール
のヒドロキシル基とアミノ基のどちらかと反応するかはそれらの塩
基性を考慮すればアミノ基が妥当であろう。この反応もベンゾイ
ミダゾロンと同様な経路を通ると考えられた。

ビスク（2,4-エトロフェノール）ジスフェニルベンゾチオアゾンへの
反応で、反応条件によっては2-アミノチオフェノールの存在が
高速液体クロマトグラフィーにより確認（添加法により）された
ので、2-アミノチオフェノールを出発物質として、水を加えずに
同様の反応を行なったところ96％収率で目的物であるベンゾチ
アゾンが得られた。また、2-エトロフェノールの硫酸、硫酸
化炭素、水系での反応でも78％収率でベンゾチアゾンを得
た。

本反応の可能な経路はつぎのように考えられる。

すなわち、系中で生成する硫酸化水素またはそのアミオンが高い
還元性16）とさらにヒドロキシル基の存在により、S-S 結合を攻撃して容
易に2-エトロチオフェノールを生成17）し、以後式（3）および
（4）と同様にヒドロキシルの還元、硫酸カルボネルとの反応、さら
には閉鎖が起こりベンゾチアゾンを与えものと考えられる。
Selective and facile synthesis of benzene ring-substituted benzimidazolones, benzoazolones and benzothiazolone was successfully accomplished in good yield by reductive carbonylation of the corresponding ο-substituted nitrobenzenes with elemental sulfur, carbon monoxide and water in the presence of triethylamine.

The reaction of elemental sulfur with carbon monoxide in the presence of triethylamine may initially afford carbonyl sulfide, which reacts with water to give the mixture of hydrogen sulfide and carbon dioxide under the reaction conditions.

Therefore, the present reactions probably took place through initial reduction of the starting nitrobenzenes with hydrogen sulfide followed by intermolecular cycloaddition of the resulting aniline derivatives with carbonyl sulfide generated in situ under the reaction conditions.

The reaction did not occur in the absence of either triethylamine or water.