水素イオン濃度または pH 値の測定に適した塩橋電解質の選択

（1990年4月24日受理）

石川 徳久・松下寛

各種塩橋電解質について、強酸溶液および pH 標準液中における液間電位差を検討した。陽イオン輸率が KCl のそれより小さい塩橋電解質は、水素イオンに起因する液間電位差の変化を減少させるため、酸溶液中での水素イオン濃度の測定に推奨される。二つの pH 標準液（フタル酸塩と中性リン酸塩）を用いて求めたガラス-比較電極対の見かけの応答勾配は、塩橋電解質の輸率にはほぼ比例した。中間 pH 領域で液間電位差を最小にするためには、対称電解質の輸率はほぼ 0.5 でなければならないという化学の必要条件が、酸溶液中での液間電位差および見かけの応答勾配についての二つの異なる実験から確認された。3.03 mol·dm⁻³ KCl と 0.97 mol·dm⁻³ CH₃CO₂Na の混合溶液について、25℃、三つの標準液（フタル酸塩、中性リン酸塩、ホウ酸塩）について Nernst 勾配が得られるため、中間 pH 領域での一般測定に適している。3 mol·dm⁻³ KNO₃ も、その応答勾配は Nernst 値よりも低いが、三つの標準液について実験誤差範囲内で直線検量線が得られるので、単一電解質の塩橋として有用である。これら塩橋液は、約 0.01 pH の誤差を許容すれば、KCl-CH₃CO₂Na について炭酸塩標準液、KNO₃ についてシュウ酸塩標準液を含めた四つの標準液の pH 領域にわたって使用される。標準液を用いて得られる検量線の直線性という点で、KNO₃ 塩橋液は、広く用いられる KCl 塩橋液よりも実用的にすぐれている。

1 緒 言

電位差測定においては、比較電極ボルダルのち サンクス：試料液の波絡に発生する液間電位差が一応問題となる。液間電位差を最小にする理想的な塩橋電解質は、全電荷を平均電荷と

\[\sum z_i u_i a_i / |z_i| = 0 \quad (1) \]

ここで、\(z_i, u_i, a_i \) は、それぞれ塩橋イオンの電荷数、電気移動度、活量を表す。

塩橋液としてもっとも広く用いられているのが、電解液の蒸発濃縮化カリウム溶液で、従来 3.0, 3.3 (0℃で蒸発しない濃度; 0℃に

おける飽和濃度は 3.36 mol·dm⁻³）, 3.5, 4.0 mol·dm⁻³ または

飽和溶液（25℃で 4.16 mol·dm⁻³）などが用いられている。塩

carbonium りよりも陽イオンの電極性が強い電解質を求める努力をし

たが失敗に終わった。このほか、KCl-KNO₃ (4:1) 溶液, 3 mol·dm⁻³ KCl-1 mol·dm⁻³ KNO₃, 2 mol·dm⁻³ RhCl₉ も

実験を行った。

2 実 験

使用した実験装置とガラス電極の特性、スリープ型液和部の処理、実験操作、薬品精製の基本的取扱いは、すべて既報と同である。とくに、アルカリ性 pH 標準液の pH 測定では、一回の測定ごとに標準液を新しく交換し、測定後の電極対は、著しく洗い、水洗い、拭き取り操作を数回繰り返した。

塩酸は和光純薬工業製の精密分析用試薬、塩化ナトリウムは松永化学工業製の標準試薬、塩化リチウムは和光純薬工業製の生化学用試薬、塩化カリウム、塩化アンモニウム、硝酸ナトリウムは四国製 "Suprapur" である。とくに、塩化リチウムは強烈な湿潤性であるため、130°C で真空中乾燥し、秤量も手早く行った。水酸化カリウムおよび水酸化ナトリウム測定液は、和光純薬工業製の 1 mol-dm⁻³ 溶液から調製し、ニッケル酸三水素カチオン K₂H₆C₆O₆₃ (pH 標準液調製用試薬) で標定した pH 標準液は、すべて和光純薬工業製の pH 標準液調製用試薬から調製した。

実験温度は、25±0.05°C で、測定はすべて 3〜5 回行った。

3 結果と考察

3.1 強酸性領域における液間電位差

液間電位差に大きく寄与する水素イオンの効果をもつために、既報の方法を用いて、3 mol-dm⁻³ 塩酸溶液：試料液の液絡における液間電位差を測定した。試料液としては、0.1 mol-dm⁻³ 塩酸を用いる、1 mol-dm⁻³ 水酸化カリウムまたは水酸化ナトリウムで標定して水素イオン濃度を変えた。イオン強度 (I) は 0.1 mol-dm⁻³ (KCl) または 1 mol-dm⁻³ (NaCl) にした。前者は水素イオン濃度の変化による水素イオン活度係数の変化が大きいので、後者は小さいのである。ただし、前者の場合で、0〜0.1 mol-dm⁻³ H⁺ の変化による起電力変化は 0.5 mV 程度である。

実験では、比較電極：塩酸液：試料液：ガラス電極の電極を用いた。この電極の起電力 E は、酸性領域で次式で与えられる。

\[E = E^o + S \log (y_H) + E_1 \] (2)

ここで、E^o は比較電極：フタ酸塩標準液：ガラス電極の起電力絶対計である。S はガラス電極の応答勾配、y_H は水素イオン活度と流れ、E₁ は液絡における液間電位差である。実験温度も同様に、水素イオン濃度の一次関数とする。

\[\log y_H = \log y_H^o + \beta_H \cdot h \] (3)

\[E_1 = E_1^0 + j \cdot h \] (4)

ここで、y_H^o は液絡密度が無限小のときの水素イオン活度係数、\(\beta_H \) は定数である。また、E_1 は液絡密度が無限小のときの液間電位差（すなわち、塩酸液：電解質溶液の液絡における液間電位差）、j は塩酸電解および支持電解質の電極と液絡によってきまる定数である。

（3）、（4）式を（2）式に代入すれば、

\[E - S \log (y_H^o/h^o) = E^o - j \cdot m - h \] (5)

ここで、

\[E^o = E^o^o + S \log y_H^o^o + E_1^0 \] (6)

\[j = j - \beta_H \] (7)

（5）式の左辺対 h の直線プロットから、E^o と j の値が決定される。E^o は実際 h による影響を表す定数で、液間電位差のものに影響するのは j 値である。

各種塩橋電解質を用いたときの j, E^o 値を表 1 に示す。塩橋電解質イオンの輸送と液間電位差の関係を考察するために、表 1 に 3 mol-dm⁻³ における陽イオン輸送数 (Iₚ) を併記した。

まず、Iₚ = 0.1 mol-dm⁻³ (KCl) の j 値についてみると、塩橋陽イオンの輸送が大きくなるほど j 値は大きくなった。塩橋電解質の陽イオンの輸送がほぼ等しい場合には、塩橋電解質イオンの量より陽イオンの輸送が大きくなる塩橋の種類のほうが、液間電位差に大きく寄与するのである。したがって、表 1 からわかるように、KCl, NH₄Cl, KNO₃, NH₄NO₃ のときは j は正に大きな値となった。

つきに、塩橋電解質の陽イオンの輸送が大きくなると、濃度が增大するときイオン電解質イオンの輸送が液間電位差が大きくなり寄与し、相対的に塩橋の寄与が小さくなるであろう。そのため、塩橋密度を変えるときの液間電位差の変化は小さくなる。なお、表 1 の NaNO₃, NaI Cl のように j 値は小さくなっ

(5) 時, 1990,* a(4) p. 92.

Table 1 J_m and E° in Eq. (5) for 3 mol·dm$^{-3}$ salt bridge solutionsa

<table>
<thead>
<tr>
<th>Salt bridge electrolyte</th>
<th>LiCl</th>
<th>NaCl</th>
<th>NaNO$_3$</th>
<th>KCl</th>
<th>NH$_4$Cl</th>
<th>KNO$_3$</th>
<th>NH$_4$NO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_m (mV·mol$^{-1}$·dm$^{-3}$)</td>
<td>-15.0 ± 0.4</td>
<td>-8.4 ± 0.7</td>
<td>-4.7 ± 0.9</td>
<td>10.1 ± 0.4</td>
<td>9.6 ± 1.0</td>
<td>18.3 ± 1.7</td>
<td>17.5 ± 1.0</td>
</tr>
<tr>
<td>E° (mV)</td>
<td>213.9 ± 0.03</td>
<td>221.8 ± 0.06</td>
<td>233.5 ± 0.04</td>
<td>233.5 ± 0.03</td>
<td>234.4 ± 0.08</td>
<td>242.8 ± 0.15</td>
<td>242.9 ± 0.03</td>
</tr>
<tr>
<td>j (mV·mol$^{-1}$·dm$^{-3}$)b</td>
<td>-10.3</td>
<td>-3.7</td>
<td>0.0</td>
<td>14.8</td>
<td>14.3</td>
<td>23.0</td>
<td>22.2</td>
</tr>
</tbody>
</table>

a Based on three determinations.
b $j=j_m+S \cdot \beta_B$. The $S \cdot \beta_B$ values are 4.7 and 0.7 mV·mol$^{-1}$·dm3 in 0.1 mol·dm$^{-3}$ KCl and 1.0 mol·dm$^{-3}$ NaCl media, respectively.
c $\Delta E^\circ = E^\circ - E^\circ$ (0.1 mol·dm$^{-3}$ NaCl medium) - E° (0.1 mol·dm$^{-3}$ KCl medium).
d Cation transfer number in 3 mol·dm$^{-3}$ solution at 18°C.
e Calcribed by assuming that the change in transference numbers with concentrations is the same with that of potassium nitrate.
4.5. 酸塩の溶液におけるイオンの輸率が大きくなると、見かけの応答倍比はNernst値より大きくなる。これはE^c_1(conv.)の値が逆に負になるためである。

ここで、$Henderson$式から計算したE^c_1値とE^c_1(conv.)を比較すると、図3のようであった（無限希釈イオン伝導度と濃度を用いて計算した）。図3からわかるように、絶対値をみると、一般に計算値の方が高くなるが、E^c_1(conv.)と計算値は同領域で吸収関係が認められた。したがって、3.1節と本節の異なる実験に基づく結果は、塩橋電極装置の輸率が、0.5 前後に近づくにつれて間電位差が小さくなるという従来の常識を検証するものである。

いずれにしても、図1のE^{mp}値と図2の結果からみると、塩橋電極としてNH4NO3、KNO3、RbCl、NH4Clは、従来広く使用されているKClとはほぼ同程度の効果を示すといえる。また、図2の結果は、硝酸イオン（または硝酸アンモニア）と硝酸ナトリウム溶液の混合電解質を用いることにより、二つの標準液についての間電位差の差をほぼゼロにし得ることを示唆するものである（次節参照）。

見かけの応答勾配とE^c_1(conv.)は、図2のように輸率に対しても直接的に変化した(E^c_1(conv.)/mV = -18.6 1.0, 10.3)が、これはつぎのように$Henderson$式から説明される。すなわち、1-1 側型塩橋電解質溶液の濃度が、試料液のそれにたべておきておきて大きいときの間電位差は、次式で与えられる。

$$E^c = -RT/F (2n_A - 1) \ln \frac{\lambda c_A}{\lambda c_B}$$

ここで、c_A と A_aq は、それぞれ塩橋電解質の濃度とモル伝導率、l_A は溶液c_Aにおける塩橋電解質のイオン輸率、c_B と l_B は試料イオンの濃度とモル伝導率である。ゆえに、E^c_1は近似的に塩橋電解質の輸率に比例することになる。なお、3mol·dm^-3 における輸率の代わりに無限希釈伝導数κを用いても、AE^c_1(conv.) 対 κ はほぼ直線にあった (AE^c_1(conv.)/mV = -25.7 13.9)。これらは、(14)式において、$l_A/l_B = r$ の比が近似的に電解質の種類に無関係になることに対応する（使用した全電解質について）。

いて、r は 0.74～1.06 すなわち、0.90±0.14 の範囲にあった。この点からみると、無線偏床割率も塩橋電解質を選択するための一つのパラメーターとして使用できる可能性がある。

つきに、図 2 においてもっとも Nernst 値に近い応答勾配を示す硝酸アンモニウムを用いて、濃度の影響を調べた。その結果、3, 4, 6 mol·dm⁻³ において、見かけの応答勾配はそれぞれ 58.87±0.02, 58.89±0.02, 58.91±0.04 mV·pH⁻¹ で、その変化は誤差範囲内であった。

従来、飽和塩化カリウム液より有利な塩橋液として、3 mol·dm⁻³ KCl-1 mol·dm⁻³ KNO₃ および 1.8 mol·dm⁻³ KCl-1.8 mol·dm⁻³ KNO₃ が提案されている。しかしながら、本実験によれば、見かけの応答勾配はそれぞれ 58.69±0.02 および 58.75 ±0.02 mV·pH⁻¹ となり、いずれも 3 mol·dm⁻³ KCl (58.74±0.03 mV·pH⁻¹) と同程度で、とくに有利な点は認められなかった。

3.3 塩酸性～中性～塩アルカリ性領域における最適塩橋電解質
pH 計の校正に使用する二つの標準液についての液間電位差を等しくする。すなわち、Nernst 勾配が得られるような塩橋電解質を用いることは、pH の実用測定上、便利かつ有意義と考えられる。そこで、図 2 の結果に基づき、硝酸アンモニウムと塩酸ナトリウムおよび塩化カリウムと塩酸ナトリウムの混合電解質について、その応答勾配を測定した。全濃度を 4 mol·dm⁻³ に固定したときの結果を、図 4 に示す（ばらつきは、いずれも ±0.03

<table>
<thead>
<tr>
<th>pH-standards</th>
<th>pHₘ</th>
<th>d pH</th>
<th>pHₘ</th>
<th>d pH</th>
<th>pHₘ</th>
<th>d pH</th>
<th>pHₘ</th>
<th>d pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 mol·kg⁻¹ KH₂CO₃</td>
<td>1.679(b)</td>
<td>1.834</td>
<td>0.155</td>
<td>1.805</td>
<td>0.126</td>
<td>1.524</td>
<td>-0.155</td>
<td>1.568</td>
</tr>
<tr>
<td>0.01 mol·kg⁻¹ Na₂B₄O₇</td>
<td>9.180(b)</td>
<td>9.181</td>
<td>0.001</td>
<td>9.207</td>
<td>0.027</td>
<td>9.483</td>
<td>0.303</td>
<td>9.380</td>
</tr>
<tr>
<td>0.025 mol·kg⁻¹ NaHCO₃</td>
<td>0.025 mol·kg⁻¹ Na₂CO₃</td>
<td>10.012(c)</td>
<td>10.024</td>
<td>0.012</td>
<td>10.064</td>
<td>0.052</td>
<td>10.106</td>
<td>0.094</td>
</tr>
</tbody>
</table>

Sₘₐₓ (mV·pH⁻¹)
59.15±0.03 59.16±0.02 57.31±0.03 57.78±0.02

1) Based on five measurements.
2) Based on the JIS pH scale.
3) Based on the NBS pH scale.
4) pH measured by using pH-meter standardized with two pH-standards (0.05 mol·kg⁻¹ KHC₈H₄O₄ and 0.025 mol·kg⁻¹ KH₂PO₄).
5) d pH = pHₘ - pHₘ.
6) Apparent response slopes determined with two pH-standards (0.05 mol·kg⁻¹ KHC₈H₄O₄ and 0.025 mol·kg⁻¹ KH₂PO₄).
7) Solubility at 25°C is 3.22 mol·dm⁻³.

Selection of the Salt Bridge Electrolyte Suitable for Measurements of Hydrogen Ion Concentrations or pH

Norihisa ISHIKAWA* and Hiroshi MATSUSHITA

Department of Industrial Chemistry, College of Engineering, Chubu University;
Matsumoto-cho, Kasugai-shi 487 Japan

Liquid-junction potentials are examined between strong acid solutions or pH-standards and various salt bridge electrolytes. Salt bridge electrolytes with cation transference numbers smaller than that of KCl are recommended for measurements of the hydrogen ion concentrations in acid solutions because they reduce changes in liquid-junction potentials resulting from the hydrogen ions. Apparent response slopes of a glass-reference electrode pair determined with two pH-standards (phthalate and neutral phosphate) were approximately proportional to the transference numbers of cation in salt bridge electrolytes. The well-known requisite that the transference numbers of symmetrical electrolytes should be nearly 0.5 in order to minimize liquid-junction potentials in the pH region near to neutral was confirmed on the basis of both the liquid-junction potentials in acid solutions and the apparent slopes of pH-response. A mixture of KCl (3.03 mol•dm⁻³) and CH₃CO₂Na (0.97 mol•dm⁻³) is suitable for general measurements in the pH region between 4 and 9 because the ideal Nernstian slope is obtained with three standards (phthalate, neutral phosphate, and borate) at 25°C. A 3 mol•dm⁻³ solution of KNO₃ is also useful as the salt bridge of single electrolyte because a straight calibration line is obtained with three standards within an experimental error although...
its response slope is lower than the Nernstian one. The salt bridges with KCl–CH₂CO₂Na or KNO₃ are useful for the pH of carbonate or oxalate standard, respectively, as well as the above-mentioned three standards, if an error of about 0.01 pH unit is allowed. The KNO₃ salt bridge is superior for practical use to the KCl salt bridge which has been widely utilized because it gives good linearities in the calibration with standards.