チオフェン類の合成および GC-MS 分析

(1992年6月10日受付)

三木 康朗*・杉本 義一・山田谷正子

C₆～C₄アルキルチオフェン類には49種類の化合物が存在するが、市販の試薬として一般に入手可能なものはその中の6種類程度であるのに対し、染料の合成のうちの36種類の化合物と20種類のC₆アルキルチオフェン類を合成した。シメチル、トリメチルおよびテトラメチルチオフェン類は、シリカルミナ触媒上でテトラメチルベンゼンからメチルチオフェンをメチル基を移行させることにより合成した。他の化合物は、ラジカル型触媒上で、市販のチオフェン類と臭素アルキルを反応させることにより合成した。たとえば、ニトロメチルチオフェン類はメチルチオフェンと臭素エチルおよびニトロチオフェンとヨウ化メチルの反応で合成され、合成経路および合成された化合物に関する鍵データの報告値から異性体の構造を決定した。合成されたチオフェン類の混合物について、分子量ごとにGC-MSを用いてイオンクロマトグラムを測定し、多くの異性体について保持時間のインデックスを作成した。

1 緒 言

石油分留油には酸素、窒素、硫黄などを含有する複数成分系化合物が含まれているが、特に含硫黄化合物および含窒素化合物は、貯蔵安定性の向上や燃焼時の環境保全の観点から、水素化処理の対象にされて来た。特に含硫黄化合物については、近年の世界的な環境問題での環境汚染の進行が重要視される中で、それらの一部の低濃度化が要求される状況になって来た。燃料油の脱硫処理は脱窒素処理などに比べると比較的容易に起きる反応であるが、脱硫率を非常に高くしようとする、個々の含硫黄化合物の反応性の差などが問題となっている。

石油、石炭液化油などの化学燃料油中の含硫黄化合物にはチオール類、硫化物、二硫化物、チオフェン等が存在し、それらの中でチオフェンとその構造を有する化合物は他の化合物に比べて脱硫されにくいことが知られている。この場合、チオフェン、ベンゾチオフェン、ジベンゾチオフェンと環構造が増加して付加することにより脱硫反応性が低下するため、脱硫反応の研究の一環として合成されたチオフェン類も環状以上のものが多い。環状のアルキルチオフェン類はアルキル基の構造、位置などによって反応性が著しく異なるため、チオフェン類の反応性を調べるべき基本となる化合物であり、それらの分析技術の確立が望まれている。

化石燃料油のような複雑な混合物の構成解析には、GC-FIDを用いる組成的定性分析法、GC-MSを用いた組成的定量分析法、GC-AED、GC-NPD、GC-FPDなどによる選択性、定量分析法、GC-MSによる選択性、定量分析法などを組み合わせた技術などが広く用いられている。特に成分の同定に関しては、質量スペクトルライブラリーとカラム保持時間インデックスが活用されているが、この場合には対象となる化合物のはほとんどすべてのデータが揃っている必要がある。

アルキルチオフェン類ではC₆～C₄アルキル化物として49種類の化合物が存在するが、市販の試薬として一般に入手可能なものはその中の6種類程度であり、GCの保持時間に関するデータも少なく、質量スペクトルもまたNBS質量ライブラリーに登録されているものを13化合物のみである。そこで、36種類のC₆～C₄アルキルチオフェン類を合成し、それらに6種類の市販のチオフェン類を加えて保持時間インデックスを作成し、さらにC₆～アルキルチオフェン類についても20種類の化合物を合成した。

2 実験

2.1 テトラメチルベンゼンを用いたメチル化

内容器40mlのステンレス鋼製オートクレーブに1～または2メチルチオフェン2ml、1,2,3,4テトラメチルベンゼン5ml、450℃で焼成したNi-SiO₂/Al₂O₃触媒0.3gを充填し、水素圧

化学技術研究機関表面化学部、305つくば市東1-1
10) 三木康朗, 杉本義一, 山田谷正子, 石油学会誌, 36, 32(1993).
8 MPa（初圧）で 350 ℃、1 時間反応させた。以降この方法をメ
チル化と称する。

2.2. 奥化アルキルを用いたアルキル化

内容積 30 ml の不純フッ化コニオフラン類 5 ml、奧化アルキル 5 ml、塩化アルミニウム 0.2 ｇを、常温で経て、白煙が激しく出始めたところで水を加えて反応を終了させた。生成液は分液漏斗で 5 回水洗浄、オフラン類をベンゼンで抽出し
た。

2.3. 分析方法

合成反応物の分析には溶融シリカ・ベリリウム・カリウム（OV-1、内径 0.2 mm×長さ 50 m）を用いた GC-FID および GC-MS を用い、50 ℃で 3 分間保持後 2.5 ℃/min で 300 ℃まで昇温さ
せ、その温度で 60 分間保持する条件で分析した。詳細は前に報
告11) した。保持時間が近い異性体の同定には保持時間の差の絶対
値が有効な判断基準となるので、保持時間の指標はベンゼンおよ
びテトラリンを標準に、それぞれの指標を GC の保持時間の分
解能に合わせて 5000 および 3000 として計算した。

2.4. 異性体間の構造決定方法

ここで用いた方法では多くの場合アルキル基の相対的置位置が異
なる 2～4 種の異性体が同時に合成された。対応路線からその構
造が推定できたもののは、沸点データの報告値を参考にし、
沸点の高いものはカラム保持時間が長くなるとしてその構造を
推定した。各異性体オフラン類の沸点と構造の間には次に示す関
係が認められたのでそれを用いた。

(a) 直鎖の置換基を有するものは、同一分子量の枝分かれ置
換基を有するものよりも沸点が高い。

(b) 一置換体では β-置換体は α-置換体よりも沸点が高い。

(c) 二置換体の沸点データが揃っているのはジメチルオフ
ラン類についてのみで、この場合の沸点は、2,4-置換体>2,3-置
換体>2,5-置換体>2,4,5-置換体の関係にあった。他の一置換体に
ついては、同様の関係が成り立つと推定した。

(d) 三置換体については十分な沸点データが得られていない
ので、上記 (a) ～(c) の組み合わせが成立すると推定した。

3. 結 果

3.1. C6 オフラン類の合成

C6 オフラン類には 6 種類の異性体が存在し、そのうち 2-メチル、3-エチルおよび 2,5-ジメチル体は市販試薬として入手し
た。2-メチルオフランのメチル化では、C6 オフランに相当
する分子量 112 を有する化合物が 3 種類生成し、それらのうち
一つは 2,5-ジメチル体であった。残りの二つの未知物質を混合
物 [1], [2] (以下すべてカラム保持時間の短い順で表す) とす
る。2-メチルオフランのメチル化でも分子量 112 を有する化合物
が 3 種類生成し、それらのうちの一つはカラム保持時間および
一つは 2-メチルオフランのメチル化では合成されなかったも
ので、3,4-ジメチルオフランと結論した。残りの 2 種は沸
点データから、[1] は 2,4-ジメチルオフラン (bp 138.5 ℃[11]
139 ℃[12]), [2] は 2,3-ジメチルオフラン (bp 139.5～
140 ℃[12]), 140 ℃[12], 140.2～141 ℃[12], 142～144 ℃[12]
142.5 ℃[13]) と推定した。NBS の質量スペクトルライブラリーやとの照合
(PBM サーチ) では [1] は 2,4-体、[2] は 2,3-体によ
り一致した。3,4-はライブラリーより収束されておらず、PBM サー
チでは [1]に次いで 2,4-体に近い結果が得られた。

Fig. 1 Mass chromatogram of m/z 112 for C6-thiophenes
Table 1 GC-MS analysis of C₅-thiophenes

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Assignment</th>
<th>RT ((\text{min}))</th>
<th>RI ((\text{m}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>2-Ethylthiophene</td>
<td>14.913</td>
<td>12896</td>
</tr>
<tr>
<td>A 2</td>
<td>2,5-Dimethylthiophene</td>
<td>15.221</td>
<td>13179</td>
</tr>
<tr>
<td>A 3</td>
<td>3-Ethylthiophene</td>
<td>15.570</td>
<td>13500</td>
</tr>
<tr>
<td>A 4</td>
<td>2,4-Dimethylthiophene</td>
<td>16.267</td>
<td>14142</td>
</tr>
<tr>
<td>A 5</td>
<td>3,4-Dimethylthiophene</td>
<td>17.149</td>
<td>14983</td>
</tr>
</tbody>
</table>

α) Retention time.
β) Retention index: Benzene; 5000, Tetralin: 30000.

上記の方法で合成された化合物のすべてを混合し、GC-MS を用いて \(m/z=112 \) のイオンを分析した。そのイオンクロマトグラムを図1に示し、図中の各ビーグに相当する化合物および保持データを表1に示す。C₅-チオフェン類のすべての異性体についての保持データが得られた。

3.2 C₅-チオフェン類の合成
C₅-チオフェン類は2種類のトリメチル体、2種類のプロピル体、2種類のイソプロピル体および6種類のエチルメチル体の異性体が存在し、それらのうち2,3,5-トリメチルチオフェンと3-プロピルチオフェンは市販試料として入手した。2-および3-メチルチオフェンのメチル化では、分子量126の化合物として（3）および（4）が生成し、2,5-ジメチルチオフェンのメチル化では（3）のみが生成した。市販試料との照合から（3）は2,3,5-トリメチル体と推定され、したがって（4）は2,3,4-トライメチルチオフェンと考えた。NBSのライブラリーよりでは2,3,4-体のみ収容されており、PBM サーチでは（4）が2,3,4-体とよく一致した。

チオフェンと臭化イソプロピルの反応では2種類の分子量126の化合物（5）、（6）が生成し、同じく臭化プロピルとの反応では4種類の化合物（5）、（6）、（7）、および（8）が生成した。市販試料との照合から（8）は3-プロピルチオフェン（bp 163.17°C）と推定し、沸点データから残りの（5）、（6）、および（7）はそれぞれ2-イソプロピル（bp 152°C）、153〜154°C）、3-イソプロピル（bp 155.5°C）、および2-プロピルチオフェン（bp 158〜162°C）、158.5°C）と推定した。NBSライブラリーより2-イソプロピル体と2-プロピル体が収容されているが、PBMサーチでは前者には（5）と（6）が、後者には（7）と（8）がほぼ等しい確率で該当した。

2-メチルチオフェンと臭化エチルの反応では分子量126の3種類の化合物（9）、（10）、（11）が、3-メチルチオフェンと臭化エチルの反応では同じく3種類の化合物（12）、（13）、（14）が生成した。また2-メチルチオフェンとヨウ化メチルとの反応では（9）、（12）および（13）が、3-メチルチオフェンとヨウ化メチルとの反応では（10）、（11）および（14）が生成した。出発原料の構造から（9）および（14）はそれぞれ2-エチル-5-メチル体および3-エチル-4-メチル体と推定した。メチルメチルチオフェン類に対する沸点データは報告例によるばらつきが大きく比較的困難であったが、この場合のアルキル基の相対的位置と沸点の関係をジメチルチオフェン類に類似すると考えると、（10）および（11）は3-エチル-5-メチル体および3-エチル-2-メチル体、（12）および（13）は2-エチル-4-メチル体および2-エチル-3-メチル体と推定される。

上記の方法で合成した化合物を混合したものの \(m/z=126 \) のイオニンクロマトグラムを図2に示す。

表2 GC-MS分析から得られた情報を基に、各物質の分配係数を計算した。分配係数は、GCで検出された各成分のピーク面積を基に、以下の式で求められた。

分配係数（k） = (ピーク面積Xの溶媒)/(ピーク面積Yの溶媒)

ここで、Xは溶媒1、Yは溶媒2である。

<table>
<thead>
<tr>
<th>No.</th>
<th>Assignment</th>
<th>Retention time (min)</th>
<th>k</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>2-(Methylthio)thiophene</td>
<td>18.58</td>
<td>3500</td>
<td>12.0</td>
</tr>
<tr>
<td>B2</td>
<td>3-(Methylthio)thiophene</td>
<td>19.44</td>
<td>3000</td>
<td>12.0</td>
</tr>
<tr>
<td>B3</td>
<td>1-(Methylthio)thiophene</td>
<td>21.44</td>
<td>2500</td>
<td>12.0</td>
</tr>
</tbody>
</table>

分配係数は、下記の通りである。

- 2-(Methylthio)thiophene: 3500
- 3-(Methylthio)thiophene: 3000
- 1-(Methylthio)thiophene: 2500

次に、それぞれの成分の保持時間は以下の通りである。

- 2-(Methylthio)thiophene: 18.58 min
- 3-(Methylthio)thiophene: 19.44 min
- 1-(Methylthio)thiophene: 21.44 min

これらの値を用いて、分配係数の計算を行った。
Fig.3 Mass chromatogram of m/z 140 for C₄-thiophenes

Table 3 GC-MS analysis of C₄-thiophenes

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Assignment</th>
<th>RT (min)</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1</td>
<td>2-(1,1-Dimethylethyl)thiophene</td>
<td>21.698</td>
<td>19138</td>
</tr>
<tr>
<td>C 2</td>
<td>3-(1,1-Dimethylethyl)thiophene</td>
<td>22.676</td>
<td>20038</td>
</tr>
<tr>
<td>C 3</td>
<td>2-(1-Methylpropyl)thiophene</td>
<td>24.096</td>
<td>21344</td>
</tr>
<tr>
<td>C 4</td>
<td>2-(1-Methylethyl)-5-methylthiophene</td>
<td>24.887</td>
<td>21870</td>
</tr>
<tr>
<td>C 5</td>
<td>2-(1-Methylethyl)-4-methylthiophene</td>
<td>24.892</td>
<td>22076</td>
</tr>
<tr>
<td>C 6</td>
<td>2-(1-Methylethyl)-3-methylthiophene</td>
<td>25.219</td>
<td>22377</td>
</tr>
<tr>
<td>C 7</td>
<td>3-(1-Methylethyl)-2-methylthiophene</td>
<td>25.525</td>
<td>22659</td>
</tr>
<tr>
<td>C 8</td>
<td>3-(1-Methylethyl)-4-methylthiophene</td>
<td>26.012</td>
<td>23647</td>
</tr>
<tr>
<td>C 9</td>
<td>3-(1-Methylethyl)-5-methylthiophene</td>
<td>26.125</td>
<td>23723</td>
</tr>
<tr>
<td>C 10</td>
<td>2-Methyl-3-propylthiophene</td>
<td>26.681</td>
<td>23816</td>
</tr>
<tr>
<td>C 11</td>
<td>2,4-Diethylthiophene</td>
<td>26.783</td>
<td>23816</td>
</tr>
<tr>
<td>C 12</td>
<td>2-Butylthiophene</td>
<td>27.110</td>
<td>24514</td>
</tr>
<tr>
<td>C 13</td>
<td>2-Methyl-3-propylthiophene</td>
<td>27.398</td>
<td>24382</td>
</tr>
<tr>
<td>C 14</td>
<td>3-Ethyl-2,5-dimethylthiophene</td>
<td>27.541</td>
<td>24514</td>
</tr>
<tr>
<td>C 15</td>
<td>2,3,4,5-Tetramethylthiophene</td>
<td>27.928</td>
<td>24870</td>
</tr>
<tr>
<td>C 16</td>
<td>3-Butylthiophene</td>
<td>28.112</td>
<td>25039</td>
</tr>
<tr>
<td>C 17</td>
<td>3-Methyl-4-propylthiophene</td>
<td>28.702</td>
<td>25582</td>
</tr>
<tr>
<td>C 18</td>
<td>3,4-Diethylthiophene</td>
<td>29.128</td>
<td>25974</td>
</tr>
</tbody>
</table>

2-エチルチオフェンと臭化イソプロピルの反応ではエチルイソプロピルチオフェンに相当する分子量154の3種類の化合物[37, (38), (39)]が生成し、臭化プロピルとの反応では6種類の化合物[37, (40), (38), (39), (41)および(43)]が生成した。エチルメチルチオフェン類が述べたのと同様の関係の想定から、これら6種類の化合物はそれぞれ2-エチル-5-イソプロピル体、2-エチル-5-プロピル体、2-エチル-4-イソプロピル体、2-エチル-4-プロピル体および2-エチル-3-プロピル体と推定した。

3-エチルチオフェンと臭化イソプロピルの反応では分子量154の3種類の化合物[43, (44), (45)]が生成し、臭化プロピルとの反応では同じく6種類の化合物[43, (44), (45), (46), (47)および(48)]が生成した。同様の考察からこれら6種類の化合物はそれぞれ3-エチル-5-イソプロピル体、3-エチル-4-イソプロピル体、3-エチル-4-プロピル体、2-エチル-2-プロピル体および3-エチル-4-プロピル体と推定した。

2,5-ジメチルチオフェンと臭化イソプロピルの反応では分子量154の化合物[49]のみが生成し、臭化プロピルとの反応では2種類の化合物[49]および[50]が生成した。それぞれの化合物は3-イソプロピル-2,5-ジメチルチオフェンと2,5-ジメチル-3-プロピルチオフェンと推定した。

2-メチルチオフェンおよび3-メチルチオフェンと臭化エチルの反応ではそれぞれ3種類の分子量154の化合物[51], (52), (53)および[54], (55), (56)が生成した。出物質のメチル基の位置および相対的な保持時間の関係から、これらの化合物はそれぞれ2,4-ジエチル-5-メチル-, 2,3-ジエチル-5-メチル-, 3,4-ジエチル-2-メチル-および2,5-ジエチル-3-メチル-, 2,4-ジエチル-3-メチル-, 2,3-ジエチル-4-メチルチオフェンと推定した。

上記の方法で生成した化合物を混ぜたもののm/z=154のイオンクロマトグラムを図4に示し、図中の各ピークに相当する化
Table 4　GC-MS analysis of C₅- and C₆-thiophenes

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Assignment</th>
<th>RTa (min)</th>
<th>RTb</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 1</td>
<td>2-Ethyl-5-(1-methylethyl)thiophene</td>
<td>29.817</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Ethyl-5-propylthiophene</td>
<td>29.900</td>
<td></td>
</tr>
<tr>
<td>D 3</td>
<td>2-Ethyl-4-(1-methylethyl)thiophene</td>
<td>30.278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Ethyl-3-(1-methylethyl)thiophene</td>
<td>30.971</td>
<td></td>
</tr>
<tr>
<td>D 4</td>
<td>3-Ethyl-2-(1-methylethyl)thiophene</td>
<td>31.985</td>
<td></td>
</tr>
<tr>
<td>D 5</td>
<td>3-Ethyl-5-(1-methylethyl)thiophene</td>
<td>32.414</td>
<td></td>
</tr>
<tr>
<td>D 6</td>
<td>3-Ethyl-5-propylthiophene</td>
<td>32.270</td>
<td></td>
</tr>
<tr>
<td>D 7</td>
<td>3-Ethyl-5-pentylthiophene</td>
<td>32.414</td>
<td></td>
</tr>
<tr>
<td>D 8</td>
<td>3-Ethyl-5-propylthiophene</td>
<td>32.940</td>
<td></td>
</tr>
<tr>
<td>D 9</td>
<td>2,4-Diethyl-3-methylthiophene</td>
<td>33.670</td>
<td></td>
</tr>
<tr>
<td>D 10</td>
<td>3,4-Diethyl-2-methylthiophene</td>
<td>34.279</td>
<td></td>
</tr>
<tr>
<td>D 11</td>
<td>3-Ethyl-4-propylthiophene</td>
<td>44.400</td>
<td></td>
</tr>
<tr>
<td>D 12</td>
<td>3,4-Diethyl-4-methylthiophene</td>
<td>35.027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,5-Bis(1-methylethyl)thiophene</td>
<td>32.624</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-Bis(1-methylethyl)thiophene</td>
<td>33.674</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3-Bis(1-methylethyl)thiophene</td>
<td>34.199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,5-Triethylthiophene</td>
<td>37.666</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,4-Triethylthiophene</td>
<td>39.185</td>
<td></td>
</tr>
</tbody>
</table>

a) Retention time.
b) Retention index: Benzene: 5000, Tetralin: 30000.

3.5 その他のチオフェン類の合成
これまで述べてきた合成過程において、いくつかの C₅以上
のアルキルチオフェン類が合成した。
チオフェンとオキソプロピルの反応ではジオキソプロピルチオ
フェンに相当する分子量 168 の 3 種類の化合物 [57], [58],
[59] が生成した。生成物の 4 種類の異性体が存在するが、ツイステルチオフェン類しか生成せず、この場合には 3,4-ジアルキルチオフェン
が生成しなかった。オキソアルキルを用いてチオフェンの 3-およ
び 4-位に同時に二つのアルキル基を導入することが困難だと思
ると考えると、化合物 [57], [58] および [59] はそれぞれ、2,5,2,4-および 2,3-ジオキソプロピルチオフェンであると示される。

2-エチルチオフェンとオキソエチルの反応ではトリエチルチオフ
ェンに相当する分子量 168 の化合物 [60] が生成し、3-エチルチ
オフェンとオキソエチルの反応では 2 種類の化合物 [60] およ
び [61] が生成した。アルキル基の位置と保持時間の関係から [60]
および [61] はそれぞれ、2,3,5-および 2,3,4-トリエチルチオフェ
ェンと推定した。この場合には、チオフェンの 3-および 4-位に
同時に二つのアルキル基を導入することが困難であることが示
される。表 4 にこれら 5 種類の C₅チオフェン類の保持データを
合わせて示す。

4 考察
アルキルチオフェン類は一般には有機合成的手法により合成さ
れるが、この方法によって多くの異性体を合成するのは、技術的
にも時間的にも非常に困難であると考えられる。すべての異性体
を合成するには、まず必要な炭素数のアルキルチオフェンを 1 種
類合成し、酸触媒上でそれを異性化するのが最も簡単な方法であ
ると考えられるが、この場合には生成物の分離、同定が困難とな
り、本研究の分析用に用いた試料を合成する目的には適さな
い。ここでは、簡単な数値的な手法の繰り返しにより多くの異性体
を合成する手段として、2 種類のアルキル化の方法を適用した。
Synthesis and GC–MS Analysis of Alkylthiophenes

Yasuo MIKI*, Yoshikazu SUGIMOTO and Syoko YAMADAYA
National Chemical Laboratory for Industry; 1-1 Higashi, Tsukuba-shi, Tsukuba-shi 305 Japan

The constituents of complex mixtures such as fossil fuels are usually analyzed by GC-FID or GC-MS. These require extensive data relating to standard samples, retention times and mass spectra. Thiophenes are the most common sulfur compounds in fossil fuels. Although there are 49 isomers of C2–C4 thiophenes, only about 6 compounds are commercially available reagents, and little data on their retention times or their mass spectra are available. Accordingly, we synthesized 36 C2–C4 thiophenes and 20 C5-thiophenes, and measured their retention times.

Polymethylthiophenes were synthesized by transferring methyl groups from tetramethylbenzene to coexisting methylthiophenes on a silica–alumina catalyst. Other thiophenes were synthesized by allowing the thiophenes to react with alkyl bromide on aluminum chloride. The position of the alkyl group was determined by superposition of the reaction pathways and consideration of reported boiling points.

The ion chromatograms of the C2-, C3-, C4- and C5-thiophenes we synthesized are shown in Figs. 1, 2, 3 and 4, respectively. The names of the compounds corresponding to the peak numbers in each figure, the column retention times, and the column retention indices, using benzene (5000) and tetralin (30000) as the standard solutions, are shown in Tables 1, 2, 3 and 4.