目的

日本版WMS-R（杉下, 2001）は、国際的な標準記憶検査である米国版WMS-R（Wechsler, 1987）を原版にできる限り忠実に翻訳し、作成した記憶検査である。この検査では検証的因子分析の結果から、米国版WMS-R（Burton et al., 1993）同様に、「注意/集中力」・「即時記憶」・「運延再生」の3因子モデルの因子構造が確認されている（大村・杉下, 2001）。

しかし、6つの年齢群を一まとめにして、16歳から74歳までの日本版標準化標本を単一母集団と見なしして分析を行っているので、年齢の影響により全体の標本において確認された3因子構造が年齢群毎に分けた標本においては確認されない可能性がある。米国版WMS-Rの改訂版である米国版WMS-R（Wechsler, 1997）では3つの年齢群毎に検証的因子分析による分析を行い、因子構造の妥当性の検討を試みている。このように年齢の異なる母集団間でこの3因子モデルにおいて見られる同一の因子構造を統計的に検討する事は、日本版WMS-Rの因子不変性を確認し、母集団間の特徴を比較するために重要であり、標準的な記憶検査として年齢によりらず同一の認知能力を測定しているという妥当性を示すことにもつながる。

検証的因子分析においては、分析対象となる標本数は少なくとも推定すべきパラメータ（母数）の約5倍は必要である（Bentler, 1985）。本分析の日本版WMS-Rの場合には一つの群に約160名の標本数が必要になる。そこで本研究では日本版WMS-R標準化標本（総標本数316名）を年齢により若年群と中高年群の2群に分け、先行研究から提唱されているこの3因子モデルに対して検証的因子分析における多母集団同時分析（multisample simultaneous confirmatory factor analysis）を適用し、年齢群間での因子構造およびその因子平均を比較検討した。

方法

日本版WMS-R標準化標本（杉下, 2001）を16-17歳（50名）、20-24歳（54名）、35-44歳（56名）の全160名から成る若年群、55-64歳（50名）、65-69歳（52名）、70-74歳（54名）の全154名から成る中高年群の2群に分け、3つの構成概念を因子とする検証的因子分析モデル「注意/集中力」・「即時記憶」・「運延再生」に対し、多母集団の同時分析を行った。分析の手順は次の如しとおりである。

年齢群毎に独立した分析

最初に両年齢群毎に以下の7モデルを比較・検討し、3因子構造であるモデル4の妥当性を確認した。モデル1：「一般的記憶」、モデル2：「一般的記憶」・「注意/集中力」、モデル3：「注意/集中力」・「言語性記憶」・「視覚性記憶」、モデル4：「注意/集中力」・「即時記憶」・「運延再生」、モデル5：「注意/集中力」・「言語性即時記憶」・「視覚性即時記憶」・「運延再生」、モデル6：「注意/集中力」・「即時記憶」・「言語性運延再生」・「視覚性運延再生」、モデル7：「注意/集中力」・「言語性即時記憶」・「視覚性即時記憶」・「言語性運延再生」・「視覚性運延再生」。

多母集団同時分析

独立した分析においてモデル4の妥当性を確認した後、多母集団同時分析を行った。同時分析による因子構造の確認に続き、得られた制約モデルの中で因子平均を比較した。分析するモデルに対しては、母数に等值の制約条件を徐々に導入していく方法で以下の仮説（H0～H4）を検定した（狩野, 1997)。仮説0 （H0）：「年齢群間で同一の因子構造が成り立つ（配置不変）」、仮説1 （H1）：「年齢群間で同一の因子構造が成り立ち、因子負荷が等しい（測定不変）」、仮説2 （H2）：「年齢群間で同一の因子構造が成り立ち、因子負荷および因子
子の分散・共分散が等しい」。仮説 3（H3）：「年齢群間で同一の因子構造が成り立ち、因子負荷および誤差の分散・共分散が等しい」。仮説 4（H4）：「年齢群間で同一の因子構造が成り立ち、因子負荷および因子の分散・共分散、誤差の分散・共分散が等しい」。

すべての分析には、共分散構造分析ソフトウェア Amos 3.6 for Windows (SmallWaters Corporation, 1997) を用い、同一課題を繰り返す下位検査には即時記憶課題（I）と遅延再生課題（II）の誤差群に関係関係を仮定して（Roth et al., 1990; Butron et al., 1993）、「情報と見当識」を除く12の下位検査に対して最大推定法による検証的因子分析を行った (Bollen, 1989)。適合度指標として \(\chi^2 \) 値、GFI (Goodness of Fit Index)、AGFI (Adjusted GFI)、CFI (Comparative Fit Index)、AIC (Akaike's Information Criterion)、RMR (Root Mean Square Residual)、RMSEA (Root Mean Square Error of Approximation) を用いた。等価条件の検定には各モデル間の \(\chi^2 \) 値の差を用いた。

結果

年齢群毎に独立した分析から、表 1 の各適度指標および表 2 に示された適合度指標を比較にした、モデル 4：「注意/集中力」、「即時記憶」、「遅延再生」の 3 因子構造が両年齢群に対して最も当てはまりが良いと判断した。（若年群： \(\chi^2 = 70.37 \) (df = 47, p = .015)、 \(\chi^2 / df = 1.50 \), GFI = .94, AGFI = .89, CFI = .96, AIC = 132.37, RMR = .59, RMSEA = .06, 中高年群： \(\chi^2 = 53.95 \) (df = 47, p = .226)、 \(\chi^2 / df = 1.15 \), GFI = .95, AGFI = .91, CFI = .99, AIC = 115.95, RMR = 1.00, RMSEA = .03)。

多母集団同時分析では、各適度指標および \(\chi^2 \) 値の差を考慮して、「仮説 1 （H1）：年齢群間で同一の因子構造が成り立ち、因子負荷が等しい（測定不変）」までが成立すると判断した（表 3）。（\(\chi^2 = 142.70 \) (df = 103, p = .006)、 \(\chi^2 / df = 1.39 \), GFI = .93, AGFI = .90, CFI = .97, AIC = 248.70, RMR = 1.41, RMSEA = .19）
表3 多母集団同時分析におけるχ²値の差による制約モデルの検定

<table>
<thead>
<tr>
<th>制約モデルNo</th>
<th>χ²値</th>
<th>df</th>
<th>χ²値の差/df</th>
<th>p値</th>
<th>等価条件の検定</th>
<th>χ²値の差</th>
<th>dfの差</th>
<th>p値</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₀(T₁)</td>
<td>124.31</td>
<td>94</td>
<td>1.32</td>
<td>.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₁(T₁)</td>
<td>142.71</td>
<td>103</td>
<td>1.39</td>
<td>.008</td>
<td>T₁-T₀</td>
<td>18.40</td>
<td>9</td>
<td>.031</td>
</tr>
<tr>
<td>H₂(T₂)</td>
<td>160.02</td>
<td>109</td>
<td>1.47</td>
<td>.001</td>
<td>T₂-T₁</td>
<td>17.31</td>
<td>6</td>
<td>.008</td>
</tr>
<tr>
<td>H₃(T₃)</td>
<td>359.05</td>
<td>119</td>
<td>3.02</td>
<td><.001</td>
<td>T₃-T₂</td>
<td>216.34</td>
<td>16</td>
<td><.001</td>
</tr>
<tr>
<td>H₄(T₄)</td>
<td>389.22</td>
<td>125</td>
<td>3.11</td>
<td><.001</td>
<td>T₄-T₃</td>
<td>229.20</td>
<td>16</td>
<td><.001</td>
</tr>
</tbody>
</table>

Note: Tₘ = 制約モデルmのχ²統計量

表4 モデル4（H₁：測定不変）における若年群および中高年群の因子負荷量（標準化したパス係数）

<table>
<thead>
<tr>
<th>下位検査</th>
<th>注意/集中力</th>
<th>記憶</th>
<th>言語性処理</th>
<th>変延再生</th>
</tr>
</thead>
<tbody>
<tr>
<td>精神統制</td>
<td>41</td>
<td>.37</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>数検</td>
<td>45</td>
<td>.61</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>視覚記憶</td>
<td>50</td>
<td>.64</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>図形記憶</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>.49</td>
</tr>
<tr>
<td>剛柔的記憶Ⅰ</td>
<td>-</td>
<td></td>
<td>42</td>
<td>.65</td>
</tr>
<tr>
<td>視覚記憶</td>
<td>-</td>
<td>-</td>
<td>68</td>
<td>.68</td>
</tr>
<tr>
<td>言語性記憶</td>
<td>-</td>
<td></td>
<td>57</td>
<td>.55</td>
</tr>
<tr>
<td>言語再生Ⅰ</td>
<td>-</td>
<td>-</td>
<td>48</td>
<td>.40</td>
</tr>
<tr>
<td>言語記憶</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>言語性記憶</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

= .04、χ²値の差：T₁-T₀=17.31、df=6、p<.01（両年齢群の標準化したパス係数（因子負荷量）は表4に示すとおりである。各因子からそれぞれの下位検査への因子負荷量は約.40以上であり、因子と下位検査は適切に対応しているといえる。また各因子間の相関は.80から.99と高い値を示した。

仮説1（H₁）を採択したため、因子平均の比較が可能となった。若年群の各因子平均を0に固定した場合、中高年群の因子平均はそれぞれ、「注意/集中力」：−.84（.26、−.747）、「即時記憶」：−.36（.60、−.937）、「変延再生」：−.835（24.34、−11.8）であった（括弧内の数値は因子の分散およびワルド検定の結果C.R. [critical ratio])。ワルド検定によるC.R.の総対値が標準正常分布の上側2.5%点である1.96を超えていれば有意である。したがってこの3つの因子はすべて2群間に有意な差があるといえる。3つの因子平均を比較すると、特に変延再生の低下が顕著であった。ただし、因子平均は相対的な差を示すものなので、推定値の大きさはそれぞれの因子が基準とした元の値からどの程度あるかを知るにはそれをほど有効ではない。そこで、因子の標準偏差でそれぞれの因子平均を基準化すると、−1.65、−1.76、−1.69（順に、注意/集中力、即時記憶、変延再生）のようにになった。つまり2つの年齢群間で注意/集中力、即時記憶、変延再生の平均の差は、各因子の標準偏差の1.65倍、1.76倍、1.69倍であった。加齢により各因子とも標準偏差の約1.7倍ほどの低下を示すことになるが、変延再生は他の2因子より分散が大きいため、より大きな因子平均の低下が確認された。

本分析から若年群と中高年群の2つの年齢群間において、「注意/集中力」、「即時記憶」、「変延再生」の3因子構造および下位検査に影響する因子負荷量の同一性（因子不変性）を確認することができた。続く因子平均の比較では、変延再生が「注意/集中力」、「即時記憶」に比べて年齢による減退が大きいことが示唆された。

考察

両母集団問において測定不変を確認できたことから、WMS-R記憶検査を構成する下位検査群が持つ検査特性は、年齢の影響によらず同一の記憶能力を測定する不変性を持つといえる。

しかし、因子平均の比較から、加齢とともに変延再生能力が、注意/集中力や即時記憶能力よりも大きく低下
すると示唆された。従来からの遅延再生能力の低下が記憶障害を検出するもっとも感受度の良い指標であるとされている（Wechsler, 1987; Butters et al., 1988; Crossen et al., 1988）。これに加えて、今回の中間分析から加齢による記憶能力低下も同様に遅延再生指標に大きく反映されることが確認された。日本版WMS-Rは年齢群毎に標準化された指標が算出されるので実用面で評価上の心配はなく、検査実施者は加齢による影響も観点に反映されていることを留意すべきであろう。

今後は記憶障害を示す高齢者の患者群からもWMS-Rの測定データを採取し、健常者群・患者群間での多母集団同時分析により、両母集団の因子構造の違いを検討し、測定・評価面に有用な知見をフィードバックさせていくことが必要である。

結論

日本版WMS-Rは若年齢群（16-44歳）と中高年齢群（55-74歳）の2つの年齢群間で因子不変性が成り立つことから、日本版WMS-Rが持つ記憶検査としての妥当性は年齢に影響されにくいといえる。しかし、因子平均の比較の結果、年齢による影響は遅延再生能力に顕著に現れることが示唆された。

文献

