Intradiploic Arachnoid Cyst Identified by Diffusion-Weighted Magnetic Resonance Imaging

—Case Report—

Satoshi YAMAGUCHI, Taizo HIROHATA, Masayuki SUMIDA*, Kazunori ARITA**, and Kaoru KURISU**

Department of Neurosurgery, Shobara Red Cross Hospital, Hiroshima; *Department of Neurosurgery, Hiroshima General Hospital, Hiroshima; **Department of Neurosurgery, Faculty of Medicine, Hiroshima University, Hiroshima

Abstract

A 72-year-old woman presented with an intradiploic arachnoid cyst in the occipital intradiploic space which was found incidentally by magnetic resonance (MR) imaging. Computed tomography revealed a widened diploic space and thinning of the inner and outer tables of the occipital bone. The cyst appeared as isointense to the cerebrospinal fluid on both T1- and T2-weighted images. The differential diagnosis of intradiploic epidermoid cyst could be excluded because the lesion was low intensity on diffusion-weighted MR images. Arachnoid cyst is a benign lesion, so exploratory surgery should be avoided unless the cyst is symptomatic. Diffusion-weighted MR imaging is an effective modality to distinguish diploic epidermoid cysts from arachnoid cysts.

Key words: intradiploic arachnoid cyst, diffusion-weighted magnetic resonance imaging

Introduction

Intradiploic arachnoid cyst (IAC) is very rare lesion, with only 12 previous cases of IACs without antecedent head injury.1,3,4,8,10,15) Exploratory surgery is usually required to establish the diagnosis. The lesion appears as isointense on both T1- and T2-weighted magnetic resonance (MR) imaging, so the differential diagnosis of epidermoid cyst and arachnoid cyst is difficult.6,14) We encountered a case of IAC in which the diagnosis could be established based on diffusion-weighted MR imaging. The IAC was thought to be innocuous, so exploratory surgery was thought to be unnecessary.

Case Report

A 72-year-old woman was referred to our department because of MR imaging evidence of an abnormal lesion. She had undergone MR imaging to investigate occasional headaches. There was no history of head trauma.

Physical and neurological examinations found no abnormalities. MR imaging showed a cystic lesion in the midline suboccipital area appearing as isointense to the cerebrospinal fluid on both T1- and T2-weighted images, with no enhancement by gadolinium (Fig. 1). Computed tomography revealed a mass lesion in a widened diploic space, and thinning of the inner and outer tables of the skull (Fig. 2). There was a small defect in the inner table, and the lesion appeared to communicate with the intracranial space. The MR images performed 20 months earlier were reevaluated, finding that the cystic lesion was present at that time. The size and cystic nature of the lesion were the same at first and second MR imaging, so we considered that the lesion was benign and suspected IAC or intradiploic epidermoid cyst. Diffusion-weighted MR imaging showed the lesion as hypointense (Fig. 3). The diagnosis was IAC, and we considered that the lesion was not related to the occasional headaches of the patient. We determined that the patient should be observed by radiological follow-up examination without exploratory surgery.
Discussion

The differential diagnosis of osteolytic lesions in the cranial vault includes metastatic bone tumor, multiple myelomas, eosinophilic granuloma, and epidermoid cyst. In our patient, all lesions except epidermoid cyst could be excluded based on the cystic appearance of the lesion and the absence of growth. The characteristic radiological findings of the intradiploic epidermoid cyst are well-demarcated osteolysis, high signal intensity on T₂-weighted images, and varied signal intensity on T₁-weighted images. The signal intensity on the T₁-weighted images depends on the contents of the cyst. The differential diagnosis between arachnoid cyst and epidermoid cyst is difficult, because epidermoid cyst may appear as low signal intensity on T₁-weighted images. Diffusion-weighted MR imaging can be used to differentiate arachnoid cysts from epidermoid cysts. Epidermoid cyst appears as high signal intensity on diffusion-weighted MR images, whereas arachnoid cyst has a low signal intensity. Therefore, the diagnosis for our patient was IAC.

"Intradiploic arachnoid cyst" was first described in 1989. Slowly-growing intradiploic cystic lesion had been confirmed previously as an arachnoid cyst in the intradiploic space. However, only 12 patients with IAC without past history of head injury have been reported. This disease is characterized by multiple, parasagittal, well-demarcated osteolytic lesions on radiological examination, commonly located in the suboccipital region of the elderly. These characteristics were quite similar to those of the diploic lesion in our case.

The reason for the occurrence of these lesions in the diploic space remains unclear. Some IACs were associated with former skull fracture. In most cases, including ours, the patient had no history of head injury. The 12 previous and the present patients with IAC without antecedent head injury had a mean age of 61.6 years, and all except one were over 50 years (Table 1). The lesion tended to occur in the parasagittal region. Three patients had local pain and one showed proptosis due to the...
Table 1 Summary of reported cases of intradiploic arachnoid cysts

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Age/Sex</th>
<th>Multiplicity</th>
<th>Affected bones</th>
<th>Symptoms</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>D’Almeida and King (1981)⁴</td>
<td>61/M</td>
<td>single</td>
<td>rt parietal</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>53/M</td>
<td>single</td>
<td>rt frontal</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Weinand et al. (1989)⁵</td>
<td>70/F</td>
<td>multiple</td>
<td>occipital, lt parietal</td>
<td>yes: local pain</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>68/F</td>
<td>multiple</td>
<td>occipital</td>
<td>yes: local pain</td>
<td>yes</td>
</tr>
<tr>
<td>Hasegawa et al. (1992)⁶</td>
<td>54/F</td>
<td>multiple</td>
<td>occipital</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>70/F</td>
<td>single</td>
<td>occipital</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>58/F</td>
<td>multiple</td>
<td>occipital</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>71/M</td>
<td>multiple</td>
<td>occipital</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>74/F</td>
<td>multiple</td>
<td>occipital</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Alfieri et al. (1996)⁷</td>
<td>57/F</td>
<td>single</td>
<td>lt frontal</td>
<td>yes: local pain</td>
<td>yes</td>
</tr>
<tr>
<td>Asahi et al. (1998)⁸</td>
<td>63/M</td>
<td>single</td>
<td>rt parietal</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Krupp et al. (1999)⁹</td>
<td>30/M</td>
<td>multiple</td>
<td>rt frontal</td>
<td>yes: proptosis</td>
<td>yes</td>
</tr>
<tr>
<td>Present case</td>
<td>72/F</td>
<td>single</td>
<td>occipital</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

mass effect. Seven patients were asymptomatic, but exploratory surgeries were performed to obtain a histological diagnosis. Only one diagnosis was based on radiological findings, and the patient could be observed without undergoing surgery. Considering the benign nature of this type of lesion, exploratory surgery should be avoided unless the lesion is symptomatic.¹¹,¹⁵

Diffusion-weighted MR imaging appears to be the best method to differentiate IAC from intradiploic epidermoid cyst without subjecting the patient to an exploratory surgical procedure.

References

Address reprint requests to: S. Yamaguchi, M.D., Department of Neurosurgery, Faculty of Medicine, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan.