Review of Past Research and Current Concepts on the Etiology of Moyamoya Disease

Kiyohiro HOUKIN,¹ Masaki ITO,¹ Taku SUGIYAMA,¹ Hideo SHICHINOHE,¹ Naoki NAKAYAMA,¹ Ken KAZUMATA,¹ and Satoshi KURODA¹

¹Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido

Abstract

Research on moyamoya disease has progressed remarkably in the past several decades. Indeed, many new facts concerning the epidemiology of the disease have been revealed and surgical treatments have been drastically improved. However, despite extensive research, the mechanism of moyamoya disease is still unknown. Consequently, the cardinal treatment of this disease has not yet been developed. For further clarification of its etiology, innovative studies are therefore indispensable. The aim of this paper is to review research on the pathogenesis of moyamoya disease to identify milestones in the direction of its true solution. Many hypotheses of the pathogenesis of moyamoya disease have been proposed in the past half century, including infection (viral and bacterial), autoimmune disorders, proteins abnormality, and gene abnormality. Some of these are now considered to be historical achievements. Others, however, can be still subjected to contemporary research. Currently, several genetic abnormalities are considered to offer the most probable hypothesis. In addition, interesting papers have been presented on the role of the endothelial progenitor cell on the pathogenesis of moyamoya disease. Intuitively, however, it appears that a single theory cannot always explain the pathogenesis of this disease adequately. In other words, the complex mechanism of several factors may comprehensively explain the formation of moyamoya disease. The “double hit hypothesis” is probably the best explanation for the complicated pathology and epidemiology of this disease.

Key words: moyamoya disease, etiology, proteomics, genetics, endothelial progenitor cell

Introduction

Cerebrovascular moyamoya disease is characterized by progressive stenotic change in the terminal portion of the bilateral internal carotid arteries and the formation of an abnormal vascular network at the base of the brain.35,49,62,63,67) The latter is thought to be a secondary phenomenon that compensates for the cerebral ischemia due to the primary internal carotid artery stenosis. The abnormally developed vascular network is defined as “moyamoya vessels.”63)

The pathological entity of moyamoya disease was established in the 1960s.35,49,63,67) Since then, particularly enthusiastic research has been conducted in Japan and progress has been remarkable in the past several decades. So far, many new aspects of the epidemiology have been uncovered and innovations in surgical treatment have been developed, including direct bypass surgery and other combined revascularization treatments.6,36,37,71)

Despite these many and extensive studies, however, the mechanism of moyamoya disease is still unknown. From a historical point of view, some of the hypotheses are now considered to be historical achievements. Thus, cerebrovascular disease with certain basic diseases or conditions, including infection and autoimmune disease are currently distinguished from definitive or probable moyamoya disease.11) However, these hypotheses have been occasionally proposed in the history of the investigation of moyamoya disease. Innovative research is indispensable for further clarification of the pathogenesis. In a sense, moyamoya disease is shrouded still in mystery, literally as a “puff of smoke” (Table 1). Consequently, the cardinal treatment to block the pathogenesis of the disease has not yet been developed. The aim of this paper is, therefore, to review the past clinical and basic research on the pathogen-
Table 1 Summary of unknown issues in moyamoya disease

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geographical distribution</td>
</tr>
<tr>
<td>2</td>
<td>Sex specificity</td>
</tr>
<tr>
<td>3</td>
<td>Heredity</td>
</tr>
<tr>
<td>4</td>
<td>Pathological specificity</td>
</tr>
<tr>
<td>5</td>
<td>Vasculogenesis (angiogenesis?)</td>
</tr>
<tr>
<td>6</td>
<td>Etiology</td>
</tr>
</tbody>
</table>

There are many ways to uncover the etiology of a disease. Conventional methods include the epidemiological approach, basic research including the animal model approach, and the clinical approach. As is well known, however, the animal model of this disease has not been established. In this paper, therefore, research on moyamoya disease and moyamoya syndrome using conventional pathological methods as well as research on proteomics, relationship between immune system and moyamoya disease or syndrome, gene abnormality, and cell abnormality will be reviewed. Finally, the authors will propose a comprehensive idea to explain the many aspects revealed by many approaches.

Materials and Methods

In this paper, studies published in English and the main studies in Japan on moyamoya disease are reviewed as comprehensively as possible. The main studies are summarized according to the following five viewpoints: i) Pathological study and abnormal thrombogenesis, ii) proteomics, iii) infection and autoimmune abnormality and human leucocytes antigen (HLA) abnormality, iv) genetics, and v) endothelial progenitor cell (EPC). These particular viewpoints are discussed in each part.

Results

I. Pathological study and abnormal thrombogenesis

Needless to say, pathological study offers essential information about the pathogenesis of moyamoya disease. However, the difficulty of the pathological approach is that specimens of the terminal portion of the internal carotid artery are difficult to obtain since autopsies conducted in patients with moyamoya disease have decreased recently. For this reason, pathological study has to be traced back to the 1990s.

Firstly, the inflammatory process hypothesis has been proposed by Masuda et al. However, as is well known, the characteristics of the stenotic change seen in moyamoya disease are quite different from those of the atherosclerotic process seen in adults. There is no lipid pool or inflammatory cell or macrophage invasion to the sub-intimal layer as typically seen in atherosclerosis. The typical pathological finding seen in the terminal of the internal carotid artery is a concentric and eccentric fibrocellular thickening of the intima that induces the stenosis of the vascular lumen. The intimal elastic lamina shows an abnormal waving form without the rupture, although it is basically maintained. Masuda et al. have demonstrated that the thickening of the intimal layer includes migration of the smooth muscle cell of media that resembles atherosclerosis but no inflammatory cells are observed. From these classic studies, we can learn that the mechanism of stenotic change seen in moyamoya disease is quite different from that of atherosclerosis. However, unfortunately, no clear hints are obtained to connect with the true pathogenesis of moyamoya disease.

On the other hand, a hypothesis of abnormal thrombogenesis has been advanced by Hosoda et al., who reported that thromboemboli are occasionally (around 50% in their autopsy cases) seen in the internal wall of the moyamoya artery and its distribution correlates well with the character of moyamoya disease. They have suggested that abnormal thrombogenesis plays an important role in the etiology of this disease. However, another study by Ikeda and Hosoda has failed to demonstrate any difference in expression of the thrombomodulin (anticoagulant protein expressed in the endothelial cells) between normal controls and moyamoya patients. Subsequently, few papers have been published to demonstrate the relationship between the etiology of moyamoya disease and abnormal thrombogenesis. Clinically sickle cell anemia is well known to cause moyamoya syndrome and abnormality in thrombogenesis is suspected in its etiology. Other research has pointed out that prothrombotic abnormality, antiphospholipid syndrome, and protein-S abnormality are commonly reported in moyamoya disease and moyamoya syndrome.

In conclusion, morphological study using classical techniques has successfully demonstrated the typical change in internal thickening of the intima in moyamoya disease. However, it has not necessarily offered insight into the essential pathogenesis of this disease.

II. Proteomics

There are many successful studies on the detec-
Table 2 Change in cytokines

<table>
<thead>
<tr>
<th></th>
<th>Elevation</th>
<th>No change</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF b-FGF</td>
<td>TGF-β</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HGF</td>
<td>VEGF, IL-8</td>
</tr>
<tr>
<td>CRABP-I</td>
<td>PDGF</td>
<td></td>
</tr>
<tr>
<td>ICAM-I</td>
<td>E-selectin</td>
<td></td>
</tr>
<tr>
<td>Cerebral artery, STA, cultured SMCs b-FGF</td>
<td>TGF-β</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDGF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HGF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIF-1α</td>
<td></td>
</tr>
</tbody>
</table>

Correlation between moyamoya disease and infection/autoimmune disease

<table>
<thead>
<tr>
<th>Infection</th>
<th>Auto-immune disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacterial infection</td>
<td>antiphospholipid antibodies syndrome</td>
</tr>
<tr>
<td>pneumococcus</td>
<td>systemic lupus erythematosus</td>
</tr>
<tr>
<td>tuberous infection</td>
<td>Graves’ disease</td>
</tr>
<tr>
<td>Propionibacterium acnes</td>
<td></td>
</tr>
<tr>
<td>Leptospira</td>
<td></td>
</tr>
<tr>
<td>Streptococcus</td>
<td></td>
</tr>
<tr>
<td>viral infection</td>
<td></td>
</tr>
<tr>
<td>Epstein-Barr virus</td>
<td></td>
</tr>
<tr>
<td>varicella-zoster virus</td>
<td></td>
</tr>
<tr>
<td>measles virus</td>
<td></td>
</tr>
<tr>
<td>human immunodeficiency virus</td>
<td></td>
</tr>
<tr>
<td>cytomegalovirus</td>
<td></td>
</tr>
<tr>
<td>auto-immune disease</td>
<td></td>
</tr>
</tbody>
</table>

Nevertheless, there is some skepticism regarding the role of abnormality of proteins seen in moyamoya disease. We do not have reliable control data of the cytokine level that may differ according to location and age. In addition, under some hypoxic and ischemic conditions, it is well known that these cytokines significantly fluctuate. In other words, the data might simply reflect the response of cytokines to hypoxic and ischemic processes in moyamoya disease. It is thus conceivable that cytokine abnormalities may be the result of ischemia but not the cause of moyamoya disease.18

III. Infection and autoimmune abnormality and HLA abnormality

These three hypotheses have been occasionally proposed in the history of the investigation of moyamoya disease (Table 3). As mentioned above, the moyamoya phenomenon observed in patients with infection or autoimmune diseases is now eliminated from moyamoya disease. However, all three are considered to correlate with each other through the common pathway of abnormality in the immune system in moyamoya disease. It is important, therefore, to review and know past research on the relationships between moyamoya disease or moyamoya syndrome and infection or immune system disorder, including autoimmune abnormality and HLA abnormality. Many infections have been reported to be related to the moyamoya phenomenon, including bacterial meningitis due to pneumococcus, tuberous infection, viral infection by varicella-zoster virus, measles virus, human immunodeficiency virus, cytomegalovirus, Epstein-Barr virus, and Leptospira infection.8,19,42,45,66,68,70

Neurol Med Chir (Tokyo) 52, May, 2012
Among these sporadic case reports, Yamada et al. have systematically studied the serum of 85 patients suffering moyamoya disease, and revealed that Propionibacterium acnes antibody and immunoglobulin M, transferrin, and α2-macroglobulin levels are significantly higher in cases of moyamoya disease.13,56,64,72 However, there are few systematic studies on subsequent infection and moyamoya disease.

Many autoimmune diseases have been reported to be related to the moyamoya phenomenon, including antiphospholipid antibodies syndrome, systemic lupus erythematosus, Graves’ disease, and HLA class I antiphospholipid antibodies syndrome, systemic lupus (case-control studies) have been performed. As shown in Table 4, four reports from Japan have conducted linkage analysis by using microsatellite markers to specify the susceptible genetic loci on familial moyamoya disease.22,25,54,77) These reports have specified the susceptible linkage at 3p24.2-p26, 6q23, 17q25, and 8q23 for familial moyamoya disease. A suggestive linkage at 12p12 has also been demonstrated. As shown in Table 5, several association studies have implicated certain genetic loci or susceptibility genes in harboring a risk for developing moyamoya disease, as shown in Tables 4, 5, and 6.

Moreover, while the onset of symptoms in parents of affected families shows an average of 30.7 years, their offspring show the first signs of moyamoya disease at an average age of 7.2 years.37) Moyamoya syndrome has also been reported in patients with other diseases of known genetic origin, such as neurofibromatosis type I and Down syndrome, among others, highlighting the evidence for a possible genetic etiology for this severe disease.37 Additionally, the following facts suggest a multifactorial etiology of moyamoya disease: the predisposition of familial occurrence,6,71,76 the non-Mendelian pattern of inheritance in familial cases.44,50) Based on these considerations, some researchers believe that moyamoya disease is inherited in a polygenic or autosomal dominant mode with a low penetrance.44,50 For decades, studies have implicated certain genetic loci or susceptibility genes in harboring a risk for developing moyamoya disease, as shown in Tables 4, 5, and 6.

Table 4 Summary of linkage analysis to specify the susceptible genetic loci for familial moyamoya disease (MMD)

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Method</th>
<th>Subject</th>
<th>Ethnicity</th>
<th>DNA marker</th>
<th>Coverage</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikeda et al. (1999)22)</td>
<td>non-parametric linkage analysis</td>
<td>77 individuals in 16 families, including 37 MMD patients</td>
<td>Japanese</td>
<td>371 microsatellite markers</td>
<td>22 autosomes</td>
<td>linkage at 3p24.2-p26 (maximal NPL score 3.46 on D3S3050)</td>
</tr>
<tr>
<td>Inoue et al. (2000)25)</td>
<td>non-parametric linkage analysis; affected sibling pair analysis</td>
<td>20 affected sibling pairs in 19 families</td>
<td>Japanese</td>
<td>15 microsatellite markers</td>
<td>chromosome 6</td>
<td>linkage at 6q25 (linkage disequilibrium at D6S441; IBD [0:12:8])</td>
</tr>
<tr>
<td>Yamauchi et al. (2000)77)</td>
<td>a combination of parametric and non-parametric linkage analysis</td>
<td>103 individuals in 24 families, including 56 MMD patients</td>
<td>Japanese</td>
<td>22 microsatellite markers</td>
<td>chromosome 17</td>
<td>linkage at 17q25 (maximal LOD score 4.58) within the 9-cM region of D17S785 to D17S836</td>
</tr>
<tr>
<td>Sakurai et al. (2004)54</td>
<td>non-parametric linkage analysis followed by TDT method</td>
<td>46 individuals in 12 families, including 12 affected sibling pairs</td>
<td>Japanese</td>
<td>428 microsatellite markers</td>
<td>genome-wide linkage analysis</td>
<td>linkage at 8q23 (MLS 3.6 and NPL 3.3 on D8S546) and suggestive linkage at 12p12 (MLS 2.3, NPL 2.5 on D12S1960), no link disequilibrium at markers in these loci</td>
</tr>
</tbody>
</table>

DNA: deoxyribonucleic acid, IBD: identical by descent, LOD: logarithm of odds, MLS: maximal LOD score, NPL: non-parametric LOD, TDT: transmission disequilibrium test.
Etiology of Moyamoya Disease

Table 5 Summary of case-control association studies to specify the candidate gene or polymorphism for moyamoya disease (MMD)

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Subjects</th>
<th>Control</th>
<th>Ethnicity</th>
<th>Candidate genotype</th>
<th>Significantly associated allele for MMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitahara et al. (1982) [14]</td>
<td>18 patients and 31 reviewed cases with MMD</td>
<td>106 normal controls</td>
<td>Japanese</td>
<td>HLA class I genotype</td>
<td>HLA-AW24 (RR 3.83), BW46 (RR 6.50), BW54 (RR 3.58)</td>
</tr>
<tr>
<td>Aoyagi et al. (1995) [16]</td>
<td>32 unrelated patients with MMD</td>
<td>178 unrelated normal controls without history of CVD</td>
<td>Japanese</td>
<td>HLA class I and II genotype</td>
<td>HLA-B51 (RR 3.7), the combination of the HLA-B51 and -DR4</td>
</tr>
<tr>
<td>Inoue et al. (1997) [20,21]</td>
<td>71 unrelated patients with MMD</td>
<td>525 normal controls</td>
<td>Japanese</td>
<td>HLA class I and II genotype</td>
<td>HLA-DQB10502 (positive association), HLA-DRB10405 and -DQB1*0401 (negative association)</td>
</tr>
<tr>
<td>Han et al. (2003) [33]</td>
<td>28 patients with MMD</td>
<td>198 normal controls</td>
<td>Korean</td>
<td>HLA-B and HLA class II genotype</td>
<td>HLA-B35 (RR 4.2)</td>
</tr>
<tr>
<td>Hong et al. (2009) [30]</td>
<td>10 children with familial MMD</td>
<td>54 children with non-familial MMD and 207 normal controls</td>
<td>Korean</td>
<td>high resolution HLA-DRB1 and DQB1 genotypes</td>
<td>HLA-DRB11302 (OR 12.76: familial MMD vs non-MMD, OR 13.42: familial vs non-familial MMD), HLA-DQB10609 (OR 14.67: familial MMD vs non-MMD, OR 35.33: familial vs non-familial MMD)</td>
</tr>
<tr>
<td>Roder et al. (2010) [31]</td>
<td>40 patients with MMD</td>
<td>68 normal controls</td>
<td>Central European</td>
<td>13 SNPs in and upstream of b-FGF, CRABP1, PDGFRb, and TGF β1 gene</td>
<td>rs 382861 (A/C) in the promoter region of PDGFRb (OR 1.81) and rs 180047 (C/G) in the first exon of TGF β1 (OR 7.65)</td>
</tr>
</tbody>
</table>

dies have been reported by using HLA genotype and single nucleotide polymorphisms (SNPs) of several cytokines or growth factors. [4,13,16,24,26,31,34,53] Thus, the association has been investigated between moyamoya disease and several markers involved in cell proliferation, constituting vessel strictures or expressing in the brain and/or vessels. As a result, several HLA alleles, SNPs of tissue inhibitor of metalloproteinase 2 promoter, PDGFR receptor β and TGF β1 have been revealed to be candidate genes or polymorphism. However, these studies have not elucidated the susceptibility gene for moyamoya disease. As Mineharu et al. have pointed out, there seem to be three main explanations as follow. [44] First, moyamoya disease may be caused by several different mechanisms (disease heterogeneity). Second, moyamoya disease exhibits different modes of inheritance (genetic heterogeneity). Finally, several genetic factors in different loci can cause the same disease (locus heterogeneity). From these view points, several studies have been conducted by using a combination of several methods to specify the susceptibility gene for moyamoya disease (Table 6). [20,38,39,43,47] Of these, two independent groups from Japan have identified, very recently, the susceptibility gene for moyamoya disease by employing a combination of several methods, including linkage analysis, case-control association studies, and gene annotation studies. Thus, Kamada and colleagues from Tohoku University employed a genome-wide association study and identified ring finger protein (RNF) 213 (*613768; http://omim.org/entry/613768) as the first moyamoya disease gene. [20] Around the same time, Liu and colleagues from Kyoto University, the University of Tubingen, Palacky University, the Chinese People’s Liberation Army General Hospital, and Seoul National University employed genome-wide linkage analysis by assuming the inheritance pattern of moyamoya disease as autosomal dominant mode with incomplete penetrance and whole genome-exome analysis. As a result, they provided evidence suggesting the involvement of RNF213 in genetic susceptibility to moyamoya disease. [39] As Liu et al. noted, the discoveries of the susceptibility gene, its association with moyamoya disease, and its unique roles in angiogenesis may yield a way to early diagnosis and prevention of the disease. It should be noted, however, that further studies are necessary to clarify the biochemical function and pathological role of RNF213 in moyamoya disease.

Neurol Med Chir (Tokyo) 52, May, 2012
Table 6 Summary of genetic studies combining several methods to specify the susceptibility gene for moyamoya disease (MMD)

<table>
<thead>
<tr>
<th>Author</th>
<th>Methods</th>
<th>Subject</th>
<th>Ethnicity</th>
<th>Coverage</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanba et al.</td>
<td>sequence analysis and bioinformatics analysis</td>
<td>9 individuals from one family, including 4 patients</td>
<td>Japanese</td>
<td>the 9-cM region within 17q25 and 26753 EST with significant similarity to the sequences of 17q25</td>
<td>no MMD related variation</td>
</tr>
<tr>
<td>Mineharu et al.</td>
<td>genome-wide parametric linkage analysis, haplotype and mutation analysis of candidate genes</td>
<td>15 highly affected families, including 55 patients</td>
<td>Japanese</td>
<td>382 markers for 22 autosomes and 18 markers for the X chromosome</td>
<td>17q25.3 with a MLS 8.07 (broad classification) and 6.57 (narrow classification) at D17S704</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>parametric multi-point linkage analysis, sequence analysis of candidate 3 genes, segregation and linkage confirmation followed by case-control study</td>
<td>194 Japanese in 36 families, including 109 patients; 5 Koreans in one family, including 2 patients</td>
<td>Japanese and Korean</td>
<td>13 markers at 5.1-Mb intervals in the 17q25-qter linkage region</td>
<td>17q25.3 with the LOD score 9.67 and Raptor ss16110142 (G/A) SNP with the LOD score 14.2</td>
</tr>
<tr>
<td>Kamada et al.</td>
<td>genome-wide association study and locus-specific association study</td>
<td>72 patients, including 8 familial cases and 45 normal controls</td>
<td>Japanese</td>
<td>genome-wide 785720 SNPs and 335 SNPs in the 17q25-ter region</td>
<td>a single haplotype consisting of 7 SNPs at the RNF213 locus was tightly associated with MMD</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>genome-wide linkage analysis and haplotype and segregation analysis whole genome-exome segregation confirmation association study confirmation study by cloning, biochemical and functional analysis</td>
<td>8 three-generation families with MMD</td>
<td>Japanese</td>
<td>382 markers for 22 autosomes and 18 markers for the X chromosome linkage at 17q25.3 (p<10^-4) with the MLS 8.46 at D17S784</td>
<td>p.R4859K (a founder mutation of RNF213) was found in 93% of familial MMD, 73% of non-familial MMD, and 1.4% of controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 index cases in above families</td>
<td>Japanese</td>
<td>the 1.5-Mb region on 17q25.3</td>
<td>p.N321S in PCMTD and p.R4810K in RNF213</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41 Japanese and one Korean families</td>
<td>Japanese and Korean</td>
<td></td>
<td>p.R4810K in RNF213 segregated in all 42 families</td>
</tr>
<tr>
<td></td>
<td></td>
<td>161, 384 Japanese cases and controls; 38, 223 Korean cases and controls; 52, 100 Chinese cases and controls</td>
<td>east Asian</td>
<td>ss179362673 (p.R4810K in RNF213)</td>
<td>strong association of pR4810K (OR338.9 in Japanese cases, OR135.6 in Korean cases, and OR14.7 in Chinese cases)</td>
</tr>
</tbody>
</table>

EST: expressed sequence tag, LOD: logarithm of odds, MLS: maximal LOD score, OR: odds ratio, SNP: single nucleotide polymorphism.

V. EPC

Since Asahara et al. first described the presence of EPCs in the peripheral blood in 1997, their biological features have been widely investigated.5) EPCs are also expected to be donor cells in cell therapy for several ischemic vascular diseases, because they are known to contribute to vasculogenesis and endothelial repair under pathological conditions. Recently, participation of EPCs has been introduced in the pathogenesis of moyamoya disease.

Firstly, Yoshihara et al. found a significant increase of circulating CD34+ cells in the peripheral blood in patients of major cerebral artery occlusion with angiographic moyamoya vessels.78) Subse-
Etiology of Moyamoya Disease

As mentioned above, EPCs contribute to vasculogenesis and endothelial repair. However, recent laboratory studies point that some circulating progenitor cells also participate in vascular remodeling including the development and progression of atherosclerotic plaque. Since the existence of smooth muscle progenitor cells (SMPCs) was described by Simper et al., attention has focused on the finding that SMPCs have opposite role to EPCs in the development of several vascular diseases.

Recently, our laboratory found that the CD34+ VEGFR2+ cells were closely involved in the intimal thickening of the supraclinoid internal carotid artery collected from adult patients with moyamoya disease. This study was interesting in that certain progenitor cells also participated in the progressive occlusive lesion in moyamoya disease. However, the roles and the identity of such cells are still unknown.

As mentioned above, vascular progenitor cells (VPCs) such as EPC and SMPC might shed new light on the pathogenesis of moyamoya disease. However, there are several issues in such ‘progenitor cell’ research. These ‘progenitor cells’ were mostly defined by surface cell markers such as CD34, CD133, and VEGFR2, but definitive specific cell markers of such ‘progenitor cell’ have not been identified so far. Moreover, in this field, there were some discrepancies among studies. Further detailed study with different viewpoints would be necessary to elucidate the role of the VPCs in the pathogenesis of moyamoya disease.

Discussion

The classical and contemporary concepts shown in this review may cause confusion. None of the studies introduced can explain, by themselves, the particular aspects of pathology and clinical presentation, or the epidemiological features of moyamoya disease. None, for example, can answer the simple question of whether or not the primary lesions of moyamoya disease are localized to the terminal portion of the internal carotid artery. Probably some studies, such as those of the abnormal value of cytokines, may reflect the secondary phenomena accompanying moyamoya disease rather than its essential cause. In addition, some phenomena, such as infection and HLA alleles abnormality, may be correlated to some trigger or enhancer of the disease. Among these phenomena, the genetic abnormality and the EPC hypothesis seem to come closest to identifying the primary cause of moyamoya disease since they have a chance of rationally explaining its particular epidemiological features. However, as mentioned, the simplest but most difficult question is the particular location of the lesion seen in the terminal portion of the internal carotid arteries. One hypothesis that may provide an answer is that, in children, the carotid bifurcation is the portion first exposed to hemodynamic shearing stress.

Consequently, it is clear that none of these hypotheses completely explains the pathological processes and clinical and epidemiological presentations of moyamoya disease. Inevitably, we must consider the possibility that multiple causes are involved to the etiology of moyamoya disease.

A “double hits hypothesis” combining existing hypotheses is shown in Fig. 1. The primary causes of moyamoya disease are considered to be multiple gene abnormalities. Some of those abnormalities may be related to qualitative and/or quantitative abnormalities in EPC. However, some triggers, such as infection or immune disorder, seem to be indispensable in starting the first step in the pathological process of the disease. Hemodynamic stress is probably also important in booting up the first mechanism.

Needless to say, the hypothesis presented in Fig. 1 is not an original one, but has simply combined existing hypotheses and arbitrarily assembled parts of existing hypotheses that are consistent with the
complicated aspects of moyamoya disease. However, the double-hit hypothesis offers an attractive thesis since it can rationally explain the complicated aspects of moyamoya disease.

We may still not understand the true etiology of moyamoya disease. As shown in this review paper, a breakthrough is not visible. However, past basic studies offer important hints for new research. It is quite important that future work on moyamoya disease pays careful attention to past and present studies.

Disclosure and Conflict of Interest

This study was partly supported by the Research Committee on Spontaneous Occlusion of the Circle of Willis (Moyamoya Disease) (Chaired by Dr. Nobuo Hashimoto) by Science Research Grants of the Ministry of Health, Labour and Welfare of Japan (H23-Nanji-Ippan-019). We have no other conflict of interest concerning this paper.

References

42) Matsushima Y, Qian L, Aoyagi M: Comparison of

Neurol Med Chir (Tokyo) 52, May, 2012

Neur Med Chir (Tokyo) 52, May, 2012
Etiology of Moyamoya Disease

Address reprint requests to: Kiyohiro Houkin, MD, Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
e-mail: houkin@med.hokudai.ac.jp