Antithrombotic Therapy for Pregnant Women

Kazunori TOYODA

1Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka

Abstract

Coagulability increases during pregnancy, and thromboembolism can easily occur. Venous thromboembolism is a cause of death in pregnant women, but arterial thrombosis such as ischemic stroke in pregnancy is also not uncommon. In pharmacotherapy for thromboembolism in pregnant women, fetal toxicity and teratogenicity must be carefully considered. As anticoagulants in pregnant women, unfractionated heparin and low-molecular-weight heparin are recommended, but warfarin is not recommended since it has a low molecular weight and crosses the placenta. Various types of new oral anticoagulant drugs have been available in Japan since 2011. However, the Japanese package inserts for these anticoagulants advise quite cautious administration in pregnant women. The guidelines on pregnant women include less information about antiplatelet drugs than anticoagulant drugs. Aspirin may cause teratogenicity and fetal toxicity, and perinatal mortality is increased. However, when low doses of aspirin are administered as antiplatelet therapy, the US Food and Drug Administration has assigned pregnancy category C, and treatment is relatively safe. Neurosurgeons and neurologists commonly encounter pregnant women with thromboembolism, such as ischemic stroke. Up-to-date information and correct selection of drugs are necessary in consultation with specialists in perinatal care.

Key words: acute stroke, anticoagulation, antiplatelet therapy, thromboembolism, venous thrombosis

Introduction

Coagulability increases during pregnancy, and thromboembolism can easily occur, primarily of the venous system. Venous thromboembolism is a cause of death in pregnant women, but arterial thrombosis such as ischemic stroke in pregnancy is also not uncommon. In pharmacotherapy for thromboembolism in pregnant women, fetal toxicity and teratogenicity must be carefully considered. However, since pregnant women are usually excluded from pharmaceutical clinical trials for ethical reasons, information on toxicity and teratogenicity in pregnancy is limited. This study presents an overview of the current status and problems with antithrombotic therapy in pregnant women, based on the “Guidelines for indication and management of pregnancy and delivery in women with heart disease (JCS 2010)”3) by the Japanese Circulation Society (JCS) Joint Working Group (fiscal year 2009); and the “Guidelines for management of anticoagulant and antiplatelet therapy in cardiovascular disease (JCS 2009)”4) by the same group (fiscal year 2008).

Pregnancy and Thromboembolism

Plasma fibrinogen, von Willebrand factor, and factors V, VII, VIII, IX, X, and XII are increased and activated in late pregnancy, thus increasing the risk of thromboembolism. Therefore, thromboembolism is clearly a danger in pregnant women at high risk for embolism, such as those with valvular heart disease, but thromboembolism such as cerebral sinus venous thrombosis may also occur in pregnant women without such risk factors. In addition, the effects of estrogen and elastase during pregnancy may cause evident structural changes in blood vessel walls, leading to increased fragility. For example,
patients with Marfan’s syndrome tend to develop aortic dissection. The structure of cerebral and cervical blood vessel walls may also be affected. Moreover, compression of the inferior vena cava due to uterine enlargement may lead to deep vein thrombosis (DVT). Therefore, pregnancy is a risk factor for thromboembolism, particularly venous thrombosis.

Nevertheless, the safety of antithrombotic drugs as treatment, as mentioned above, has not been well established. Fetal toxicity and teratogenicity are major concerns of drug administration in pregnancy, and are affected by placental transfer of drugs and the stage of pregnancy (Table 1).

Anticoagulant Drugs in Pregnant Women

The JCS Joint Working Group provides the following recommendations for anticoagulant therapy in pregnancy.

Class I: In pregnant women with a prior history of DVT but no other risk factors, follow-up observation until delivery and warfarin administration for 4–6 weeks postpartum is recommended.

Class IIb:
1. In pregnant women with a prior history of DVT and other risk factors (e.g., congenital or acquired blood dyscrasias), prophylactic administration of low-molecular-weight heparin or moderate dose-adjusted unfractionated heparin starting during pregnancy and warfarin administration for 4–6 weeks postpartum are recommended.
2. In all patients with a prior history of DVT, use of elastic stockings pre- and postpartum is recommended.
3. In patients requiring long-term warfarin therapy who wish to become pregnant, planned pregnancy with a switch from warfarin to dose-adjusted heparin, or promptly switching from warfarin to dose-adjusted heparin when pregnancy is confirmed at an early stage by frequent pregnancy testing is recommended.

Therefore, unfractionated heparin or low-molecular-weight heparin is recommended in pregnant women; whereas warfarin is not recommended. Table 2 summarizes the effects of anticoagulant drugs in patients during pregnancy and breastfeeding.3) Table 3 shows the US Food and Drug Administration (FDA) pregnancy categories for these drugs.1)

Unfractionated heparin and low-molecular-weight heparin do not cross the placenta because of their high molecular weight and do not cause harm to the fetus. However, in Japan, the use of low-molecular-weight heparin for thromboembolism prophylaxis in patients with a history of valvular heart disease or DVT is not covered by health insur-

Table 1 Pregnancy stage, teratogenicity, and fetal toxicity

<table>
<thead>
<tr>
<th>Pregnancy stage</th>
<th>Teratogenicity and fetal toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilization to day 27</td>
<td>no effect stage: malformations do not occur (no fertilization, no implantation, or miscarriage)</td>
</tr>
<tr>
<td>Days 28 to 50</td>
<td>absolutely sensitive stage: important fetal organ formation, highest risk of teratogenicity</td>
</tr>
<tr>
<td>Days 51 to 112</td>
<td>relatively sensitive stage: genitalia and palate formation not yet complete, teratogenicity such as cleft palate</td>
</tr>
<tr>
<td>Day 113 to delivery</td>
<td>potentially sensitive stage: risk of teratogenicity is rare, attention must be paid to fetal toxicity</td>
</tr>
</tbody>
</table>

Table 2 Effects of anticoagulant drugs in patients during pregnancy and breastfeeding

<table>
<thead>
<tr>
<th>Drug</th>
<th>Classification</th>
<th>FDA category</th>
<th>Characteristics/adverse reactions</th>
<th>Teratogenicity</th>
<th>Breastfeeding during use</th>
<th>Package insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>coumarin</td>
<td>D</td>
<td>teratogenicity, fetal hemorrhagic complications</td>
<td>yes</td>
<td>allowed</td>
<td>contra-indication</td>
</tr>
<tr>
<td>Heparin</td>
<td>unfractionated</td>
<td>C</td>
<td>bone demineralization with long-term administration (fractures in mothers), higher incidence of thrombosis than with warfarin, risk of heparin-induced thrombocytopenia</td>
<td>no</td>
<td>allowed</td>
<td>contra-indication</td>
</tr>
<tr>
<td>Enoxaparin</td>
<td>low-molecular-weight</td>
<td>B</td>
<td>reports of heparin-induced thrombocytopenia, not indicated for thrombus prophylaxis in cardiovascular disease</td>
<td>no</td>
<td>allowed</td>
<td>relative contra-indication</td>
</tr>
<tr>
<td>Dalteparin</td>
<td>low-molecular-weight</td>
<td>B</td>
<td>reports of heparin-induced thrombocytopenia, not indicated for thrombus prophylaxis in cardiovascular disease</td>
<td>no</td>
<td>allowed</td>
<td>contra-indication</td>
</tr>
</tbody>
</table>

Revised with permission from the *Circulation Journal* (76: 240–260, 2012), ©2012, the Japanese Circulation Society.3)
Table 3 US Food and Drug Administration (FDA) pregnancy categories

The FDA-assigned pregnancy categories as used in the Drug Formulary are as follows:

Category A
Adequate and well-controlled studies have failed to demonstrate a risk to the fetus in the first trimester of pregnancy (and there is no evidence of risk in later trimesters).

Category B
Animal reproduction studies have failed to demonstrate a risk to the fetus and there are no adequate and well-controlled studies in pregnant women.

Category C
Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.

Category D
There is positive evidence of human fetal risk based on adverse reaction data from investigational or marketing experience or studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks.

Category X
Studies in animals or humans have demonstrated fetal abnormalities and/or there is positive evidence of human fetal risk based on adverse reaction data from investigational or marketing experience, and the risks involved in use of the drug in pregnant women clearly outweigh potential benefits.

Reproduced with permission from Drugs in Pregnancy and Lactation, 8th ed., ©2008 Lippincott Williams & Wilkins.1)
in the fetus than in mothers. Therefore, to prevent teratogenicity in the absolutely and relatively sensitive stages, and to prevent complications such as fetal intracranial hemorrhage in the later period of pregnancy due to decreased clotting factors, warfarin administration is not recommended in pregnant women.

Figure 1 shows anticoagulant therapy in pregnant women after mechanical heart valve replacement, consisting of warfarin and heparin administration from week 14 to about week 33 of pregnancy. The rationale based on guidelines is that the prophylactic effects of heparin on thrombus are uncertain. Moreover, the rationale for a daily dose of warfarin \(\leq 5\) mg is based on the dose-dependence of warfarin teratogenicity. However, an oral warfarin dose of 5 mg is considered quite high in Japanese patients, so warfarin should be carefully administered while monitoring the prothrombin time (international normalized ratio). The guidelines from the American Heart Association/American Stroke Association recommend that the following options may be considered for pregnant women with ischemic stroke or transient ischemic attack and high-risk thromboembolic conditions such as hypercoagulable state or mechanical heart valves: adjusted dose unfractionated heparin throughout pregnancy, for example, a subcutaneous dose every 12 hours with monitoring of activated partial thromboplastin time; adjusted-dose low-molecular-weight heparin with monitoring of anti-factor Xa throughout pregnancy; or unfractionated heparin or low-molecular-weight heparin until week 13, followed by warfarin until the middle of the third trimester and reinstatement of unfractionated heparin or low-molecular-weight heparin until delivery (Class IIb, Level of Evidence C). Because home heparin self-injection is now covered by health insurance, the number of patients using heparin is thought to be increasing.

Various types of new oral anticoagulant drugs have been available in Japan since 2011, and these can be clinically used in patients with non-valvular atrial fibrillation and those undergoing lower limb orthopedic surgery. These new agents include the direct thrombin inhibitor dabigatran and the activated factor X inhibitors edoxaban, rivaroxaban, and apixaban. In large-scale clinical trials, these new oral anticoagulants have reduced hemorrhagic complications to the same or greater extent than warfarin, and in particular, the incidence of intracranial hemorrhage compared to warfarin is markedly decreased. In addition, argatroban, an intravenous direct thrombin inhibitor, is now widely used as an alternative to heparin for treatment of the acute phase of cerebral infarction and in heparin-induced thrombocytopenia. However, the Japanese package inserts for these anticoagulants advise cautious administration in pregnant women. In other words, dabigatran, edoxaban, and apixaban should only be used when the benefits outweigh the risks, and rivaroxaban should not be given to pregnant women. Argatroban has been assigned pregnancy category B by the FDA, but the Japanese package inserts specify that argatroban should not be administered to pregnant women.

Antiplatelet Drugs in Pregnant Women

Venous thrombosis occurs more often than arterial thrombosis in pregnant women, and the guidelines include less information about antiplatelet drugs than anticoagulant drugs. Table 4 summarizes the effects of antiplatelet drugs in patients during pregnancy and breastfeeding. Aspirin, the leading antiplatelet drug, may cause teratogenicity and fetal toxicity such as premature closure of the ductus arteriosus, and perinatal mortality is increased. But when low doses of aspirin are administered as antiplatelet therapy, the FDA has assigned pregnancy category C, and treatment is relatively safe. However, the drug package insert says “contraindicated (regardless of dose) in pregnant women within 12 weeks of the expected date of delivery (pregnancy week 28 or later).” Therefore, a full explanation and

<table>
<thead>
<tr>
<th>Drug</th>
<th>FDA category</th>
<th>Characteristics/adverse reactions</th>
<th>Teratogenicity</th>
<th>Breastfeeding during use</th>
<th>Package insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin (low dose)</td>
<td>C</td>
<td>considered relatively safe, do not use in pregnancy week 28 or later regardless of dose</td>
<td>no</td>
<td>potential toxicity</td>
<td>relative contraindication</td>
</tr>
<tr>
<td>Dipyridamole</td>
<td>B</td>
<td>hypotension, worsening of angina pectoris</td>
<td>no</td>
<td>probably allowed toxicity</td>
<td>relative contraindication</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>B</td>
<td>hemorrhage, liver dysfunction</td>
<td>no</td>
<td>potential toxicity</td>
<td>relative contraindication</td>
</tr>
</tbody>
</table>

Table 5 Information in Japanese package inserts regarding use of antiplatelet drugs in pregnant women

<table>
<thead>
<tr>
<th>Drug</th>
<th>Guideline for use in pregnant women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>up to week 28: may be used if risks outweigh the benefits, week 29 and later: do not use</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>may be used if risks outweigh the benefits</td>
</tr>
<tr>
<td>Ozagrel</td>
<td>may be used if risks outweigh the benefits</td>
</tr>
<tr>
<td>Cilostazol</td>
<td>do not use in pregnant women</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>do not use in pregnant women</td>
</tr>
</tbody>
</table>

informed consent are necessary for administration in the third trimester of pregnancy.

The Japanese package inserts for clopidogrel and ozagrel recommend use only when the benefits outweigh the risks (Table 5). Cilostazol and ticlopidine are contraindicated in pregnant women. On the other hand, aspirin and ozagrel are reported to be effective in preventing placental thrombosis in pregnant women with autoimmune disorders such as antiphospholipid syndrome.

Conclusion

In the present paper, the author, who is not a specialist in perinatal medicine, has discussed using antithrombotic drugs in pregnancy based on guidelines and package insert information. Searching the literature often found disagreement between information in FDA categories, Japanese guidelines, Japanese package inserts, and overseas package inserts, but this was not further pursued. Neurosurgeons and neurologists also commonly encounter pregnant women with thromboembolism, such as ischemic stroke. Up-to-date information and correct selection of drugs are necessary in consultation with specialists in perinatal care.

Conflicts of Interest Disclosure

The author declares that he has no conflict of interest.

References

Address reprint requests to: Kazunori Toyoda, MD, PhD, Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, 5–7–1 Fujishirodai, Suita, Osaka 565–8565, Japan. e-mail: toyoda@ncvc.go.jp