15.7% of subdural hematoma.

On plastic operation of skull with the resin-plate, the result was satisfactory.
The mortality of craniotomy was 26.5%.

Particularly, the mortality of intracranial hematoma was 38.7% and many of them were suffering from acute subdural hematoma with severe brain lesion.

I-18. **Mechanism of Retinal Haemorrhage in Acute Head Injury**

Shinjiro YAMAMOTO, Hideaki MURATA, Tomonori HANYU and Akira KINOSHITA

Department of Neurosurgery, School of Medicine, University of Kanazawa

Retinal haemorrhage in acute head injury is most indicative of the acute subdural hematoma with cerebral contusion. The sooner the appearance of retinal haemorrhage, the more unfavorable the prognosis quoad vitam. In the present investigation, eight autopsy cases with retinal haemorrhage were examined.

1. Gross anatomical findings of the brain:

 Both subdural haematoma with brain contusion and brain edema, in all cases. Brain stem haemorrhage, in 5 cases. Tentorial herniation, in 6 cases.

2. Gross anatomical findings of the optic nerve:

 Optic nerve sheath haemorrhage, in all cases. Extradural haemorrhage of optic nerve, in 2 cases. Optic nerve sheath haemorrhage existed chiefly in subdural space, particularly in anterior end portion, while no bleeding in optic canal.

3. Gross and microscopic findings of eye-balls:

 In the retina and chorioidea, venous congestion was remarkable. Dotted and stream-like haemorrhage was found in the retina. It was in a form of transudative haemorrhage. A rupture of superficial vessels of retina were observed in round pre-retinal haemorrhage.

4. Mechanism of retinal haemorrhage:

 Acute intracranial hypertension following subdural or subarachnoidal haemorrhage causes venous congestion in eyeballs as well as in orbita. This produces rupture of vessels supplying optic nerve, developing to optic nerve sheath haemorrhage. The congestion of retinal central vein promotes retinal haemorrhage or rupture of superficial vessels. On the other hand, disturbance of cerebral blood flow causes congestion of brain stem region, and then brain stem haemorrhage is produced.