Extradural Optic Nerve Decompression for Fibrous Dysplasia with a Favorable Visual Outcome

—Case Report—

Masanori KURIMOTO, Shunro ENDO, Keiichiro ONIZUKA, Takuya AKAI, and Akira TAKAKU

Department of Neurosurgery, Toyama Medical and Pharmaceutical University, Toyama

Abstract

A 10-year-old boy with progressive left visual disturbance associated with craniobasal fibrous dysplasia underwent left frontotemporal craniotomy. Dysplastic lesions of the sphenoid ridge, orbital roof, anterior clinoid, and ethmoid sinus were removed through an extradural pterional approach and the optic nerve was completely decompressed. His vision was markedly improved postoperatively. Consecutive follow-up studies for 3 years have shown no deterioration of his visual acuity. Early optic nerve decompression is highly recommended to preserve visual function in patients with craniofacial fibrous dysplasia causing visual disturbance.

Key words: fibrous dysplasia, optic nerve decompression, skull base surgery

Introduction

Fibrous dysplasia is a developmental bone disease of unknown etiology, in which normal bone is replaced by fibro-osseous tissue. It may affect only one bone (monostotic form) or multiple bones (polyostotic form). The craniofacial bones are involved in 10% of patients with monostotic disease and 50% with the polyostotic form.19 Ocular problems such as visual loss, diplopia, and proptosis occur in 20–35% of patients with craniofacial fibrous dysplasia.11,13,19 The best treatment for the optic nerve lesions associated with fibrous dysplasia is surgery. However, in most cases the visual outcome after surgery was not satisfactory.

We present a patient with progressive visual disturbance associated with fibrous dysplasia, who underwent optic nerve decompression by the unilateral extradural approach and achieved a favorable visual outcome.

Case Report

A 10-year-old boy was hospitalized with progressive left visual disturbance. His visual acuity was 20/50 by the Snellen test 4 months before admission. However, on admission his vision had deteriorated to 20/500, but the visual field remained normal. A fundoscopic examination showed mild optic atrophy in the left eye. There was no facial asymmetry or proptosis of the eye balls.

Plain skull x-ray films showed smooth, homogeneous, and well-defined sclerosis in the left orbital roof and ethmoid sinus. Rhese-Goalwin's view showed narrowing of the left optic canal with surrounding dysplastic bone. Three-dimensional computed tomography (3D-CT) demonstrated enlargement of the left anterior clinoid process and planum sphenoidale (Fig. 1). Abnormal proliferation of the bone was present in the ethmoid sinus. These radiological findings suggested left optic nerve compression due to fibrous dysplasia.

A left frontotemporal craniotomy was performed to decompress the left optic nerve. The dysplastic sphenoid ridge was removed and the superior orbital fissure was opened through an extradural pterional approach. The fibrous dysplastic tissue was firm and hemorrhagic. The thickened orbital roof, anterior clinoid process, and ethmoid bone were drilled out with a high speed drill, and the optic nerve was completely decompressed (Fig. 2). There were no abnormal mor-
The resulting bone defects in the left orbital roof and the lateral wall of the orbit were reconstructed using methyl methacrylate.

Histological examination of the surgical specimen revealed proliferation of fusiform fibroblasts and formation of irregular bony trabeculae. These findings confirmed the diagnosis of fibrous dysplasia.

His postoperative course was uneventful. Visual acuity improved immediately and became 20/100 2 months after surgery. Postoperative 3D-CT showed adequate decompression of the left optic nerve (Fig. 3). Although considerable fibrous dysplastic tissue remained in the ethmoid sinus, no progression of visual disturbance or CT evidence of increased dysplastic bone was detected during consecutive follow-up studies for 3 years.

Discussion

There is some controversy about the surgical treatment of craniofacial fibrous dysplasia. In the past, radical surgical procedures were avoided because of the poor cosmetic and functional results. Surgery was warranted only in patients with either severe deformity or neurological symptoms. Partial resection to restore or maintain certain important functions such as vision during the active growth phase is advocated for most patients, because the lesion tends to stabilize in early adult life. However, recent advances in craniofacial surgery and skull base surgery allow more aggressive and earlier surgical treatment. Total excision and immediate reconstruction with autogenous bone graft may prevent both recurrence and malignant degeneration. However, even in the last decade, total excision of the lesion has rarely been possible in the central cranial base and radical surgery has frequently caused greater functional loss than the disease process.

Chen and Noordhoff recently proposed indications for the surgical treatment of craniomaxillofacial fibrous dysplasia, based on classification of the craniofacial bones into four major zones. Extensive excision and reconstruction should be restricted to the facial area (zone 1) and central cranial base lesions (zone 3) should be excised only when function is impaired or endangered.

Twenty-three patients with fibrous dysplasia and visual disturbance have been treated by decompressive surgery (Table 1). Good postoperative visual acuity was not obtained in most patients, and in three visual acuity deteriorated after surgery. These poor surgical results may be due to the long period of optic nerve compression and atrophic fundi before surgery. Only seven patients had dramatically improved vision postoperative-
In these patients, direct compression of the optic nerve had caused visual disturbance but severe optic atrophy had not occurred. In some patients, accompanying nasal mucocele or hemorrhage into the involved tissue may have been the cause of rapid visual disturbance. These patients showed rapid improvement of vision after surgery. The optic nerve is susceptible to compression and ischemia, so once severe loss of visual acuity occurs, visual outcome after surgery will be poor. Therefore, surgery should be performed before optic atrophy occurs.

Different approaches have been used for optic nerve decompression for craniofacial fibrous dysplasia. The intradural and combined intradural and extradural approaches provide good orientation and allow complete tumor excision. However, these approaches may cause complications such as cerebrospinal fluid (CSF) leakage or damage to the susceptible optic nerve. The extradural approach is less invasive for the compressed nerve. Saito et al. emphasized that the bilateral optic nerves could be decompressed without CSF leakage or damage to the brain using a purely extradural approach. Munro suggested that use of the high speed drill risks transmitting thermal energy to the brain and nerves. The extradural approach might transmit less such thermal energy to the optic nerve than the intradural approach. However, skillful microneurosurgical techniques are required using either approach to prevent neurological complications.

We recommend that surgical treatment of craniofacial...
Optic Nerve Decompression for Fibrous Dysplasia

105

cial fibrous dysplasia with visual disturbance should be undertaken as early as possible. Visual improvement can be expected if the optic fundi are not atrophic.

References


Address reprint requests to: M. Kurimoto, M.D., Department of Neurosurgery, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-01, Japan.