澱粉のクロマトグラフィーに関する研究（第1報）

澱粉のペーパークロマトグラフィー

市販デキストリンの品質の判定にペーパークロマトグラフィーの適用を実験中、使用する濁紙（東洋濁紙No.2）が沃素で青色に呈色することを認めた。この青色に呈色する物は、濁紙をKOH溶液で流下洗浄した後、流水中洗浄するとほぼ完全に除かれた。この流下洗浄の途中で沃素で呈色させるとKOH溶液の流下がはじまった所と流下前線とのほぼ中央の所に、沃素で青色に呈色する物がバンド状に著しく集ることを認めた。既に澱粉のアミロース、アミロペクチンは紙繊維に吸着される様子が異って、アミロースは著しく強く吸着され、アミロペクチンは冷水で容易に流出されることが報告されている。この2つのことから、濁紙に澱粉を吸着させてKOH溶液で展開すると、澱粉のアミロース、アミロペクチンの両区分の分離が可能であろうと考えて、KOH溶液を展開溶液として、上昇法による澱粉のペーパークロマトグラフィーを試みたので、その結果を報告する。

I. 緒 言

1. 供試澱粉 市販粳米白米、市販雑米白米から佐藤氏の稀アルカリ浸漬法（0.25％NaOH）によって澱粉を分離し、ガラスフィルター上に吸引濁過ごして集め、メタノール、エーテルで順次洗浄して脱水し、室内に放置する。次いで85％メタノールを濁紙の10倍量加えて逆流冷却器をつけて1時間煮沸した後、ガラスフィルター上に吸引濁過ごして集め、熱85％メタノールで洗浄、この操作を3回くりかえして脱脂する（③）。後にメタノール、エーテルで洗浄、減圧乾燥（70℃）して精製澱粉とする。

2. 濁紙ストリップの前処理 使用する濁紙を沃素アルコール溶液に浸漬すると青色に呈色するので、次の様に前処理する。濁紙（東洋濁紙No.2）を4×30cmの大きさのストリップに切って5cmの所で折りまげ、デシケーター中で15％KOH溶液で下降法を準じて1日間流下洗浄した後、流水中で洗浄し、完全にアルカリを除いて風乾する。更に同じ処理を1回くりかえす。この処理した濁紙の上と下の端を切りすぎて2×25cmのストリップとする。この前処理によって濁紙中の沃素で青色に呈色する物は、澱粉のペーパークロマトグラフィーに支障のない程度に除かれた。

3. 試料溶液 澱粉またはアミロースを50mg秤取し、これに0.5N KOH溶液を10ml加え、一夜冷蔵庫（5℃）中で放置した後、振拌して完全に分散させる。

4. 展開方法 破損したアルコール幅酸計の毛細管を引き伸して自製したミクロビペットで、試料溶液の0.003mlを濁紙ストリップの原点（ストリップの1端より3cm）につけて風乾する。これを1N KOH溶液で上昇法によって展開前線15cmまで展開する（室温）。

5. 呈色方法 展開溶液がKOH溶液であるため、展開したストリップを10％醋酸溶液に浸漬してアルカリを中和し、直に沃素アルコール溶液（沃素200mgを90％アルコール50mlに溶解し、水50mlを加える）に浸漬して呈色させる。

II. 実験結果及び考察

1. 供試澱粉溶液の濃度 稲米澱粉の0.2〜10.0mg/ml溶液の0.003mlについて、1N KOH溶液によって展開したペーパークロマトグラムを第1図に示した。これによると何れの場合にも原点には赤紫色の円形の斑点があって、その周囲には僅かの青紫色のリングがあるスポットを認め、原点と展開前線とのほぼ中央にV

By Motoji TAKI (Faculty of Agriculture, Mie University)
字型の青色のスポットを認めた。展開のまま、スポットの確認のためには5 mg/ml の澱粉溶液が適当と考えて、以下の実験にはこの濃度を使用した。

2. 展開剤 KOH 溶液の濃度 桧米澱粉の5 mg/ml 溶液の 0.003 ml について、0.05〜2.00 N KOH 溶液で展開したペーパークロマトグラムを第2図に示した。これによると 0.05, 0.10 N KOH 溶液では全く展開されず、原点に中央より赤紫色の円形の斑点を有し、その周囲に青紫色の強いリングを有するスポットが認められたのみであった。0.25 N KOH 溶液では、原点及び展開前線とはほぼ中央に V 字型の青色のスポットが認められ、原点の青色のリングはやや淡くなった。0.5 N 以上の濃度の KOH 溶液では、濃度の高くなるにつれて V 字型の青色のスポットは大きさ、青色度が増して、それと共に原点の青色のリングは淡くなって、1.00 N, 2.00 N KOH 溶液では非常に淡くなったので、展開剤として 1 N KOH が適当であると考えた。

3. 桧米澱粉の展開の場合 桧米澱粉の5 mg/ml 溶液の 0.003 ml について、0.10〜1.00 N KOH 溶液で展開したペーパークロマトグラムを第3図に示した。これによると 0.10, 0.25 N KOH 溶液では展開物は認められず、0.05〜1.00 N KOH 溶液で極めて微量の青色のスポットが認められた。原点のスポットは赤色で、桇米澱粉の場合に見られた青色のリングはなかった。

4. アミロースの展開の場合 甘藷澱粉のアミロースの5 mg/ml 溶液の 0.003 ml について、0.10〜1.00 N KOH 溶液で展開したペーパークロマトグラムを第4図に示した。これによると、0.10 N KOH 溶液の場合すなわち原点のスポットに続いて、舌状の青色の上昇部があった。0.25 N KOH 溶液では更にこの舌状の上昇部は大きくなったが、V 字型の青色のスポットは出現しなかった。0.50〜1.00 N KOH 溶液では V 字型の青色のスポットが何れの場合も出現して、KOH 溶液の濃度の高くなるにつれて大きくなって、原点には青色の甚だ弱いリングが認められた。別にアミロース溶液を漉紙によって風乾し、醋酸で中和後、沃素で呈色させるとスポットの中心には桇米澱粉の場合に見られる赤紫色の円形の斑点はなく、全体が青色で周辺が中心部よりもはるかに濃く呈色した。

以上の諸実験の結果から、II のペーパークロマトグラフィーでアミロースは殆ど全部が原点より上昇して、原点と展開前線のほぼ中央に V 字型の青色のスポットをあたえ、アミロベクチンは桇米澱粉の展開の結果から
考えて原点にそのまま残ると考えられる。このことから種々の渦粉のペーパークロマトグラフィーで、原点と展開前線とのほぼ中央に出現する青色のスポットは渦粉のアミロースによるものであって、原点に残る赤紫色のスポットは僅かばらのアミロースを同層に移し換えるもののと考えられる。かくて 1 N KOH 溶液を展開剤とするペーパークロマトグラフィーで、渦粉のアミロース、アミロベクチンを分けることがあると考えられる。

IV. 要　約
KOH 溶液を展開剤とする渦粉のペーパークロマトグラフィーを試み、次の方法を設定した。即ち 15% KOH 溶液を流下洗浄法で前処理した濾紙ストリップに渦粉溶液（0.5 N KOH）をつけて、風乾後、1 N KOH 溶液で展開する。展開後、ストリップを乾燥することなく 10% 酢酸溶液に浸漬して中和後、沃素アルコール溶液に浸漬し呈色させる。この方法で渦粉のアミロース区分は原点から移動し、アミロベクチン区分は原点に残って渦粉は両区分に分けられることを認めた。

種々御指導を頂いている大阪大学産業科学研究所二国教授に深謝する。甘諸渦粉のアミロースを発見された滋賀県立農業短期大学馬場助教授に深謝する。
（本報告の要旨は 1952 年 10 月 11 日、破阜大学農学部における第 4 回中部地区農林学会で発表した。）

（2）佐藤静一：渦粉に関する研究，大雅堂，2954 (1942).

澀粉のクロマトグラフィーに関する研究（第 2 報）*
澀粉のペーパークロマトグラフィーの定量化

昭和 33 年 7 月 7 日 受理

I. 緒　言
前報(1)にて展開剤として 1 N KOH 溶液を使用する渦粉のペーパークロマトグラフィーによって、アミロース区分は原点から移動し、アミロベクチン区分は原点にとまることを知った。よって渦粉のペーパークロマトグラフィーを低速法で行い、アミロース区分をストリップから流出させて捕集して、渦粉のアミロース含量の定量を試みたので其の結果を報告する。

II. 実　験　の　部
1. 供試渦粉、アミロース、アミロベクチン

（1）市販澀米澀粉、市販澀米澀粉：前報(1)と同じ。
（2）馬鈴薯澀粉：東京馬鈴薯澀粉を再重蒸して精製し、減圧乾燥（70°）する。
（3）アミロース：澀米澀粉、馬鈴薯澀粉から二四等の沈澱剤-酵素法(2)によって分離し、減圧乾燥（70°）する。
（4）アミロベクチン：澀米澀粉から二四等の方法(3)によって分離し、減圧乾燥（70°）する。

2. 濾紙ストリップ 前報(1)に同じ、大きさは 2×15 cm で第 1 図の様に A, B の 2 本の線を鉛筆でかくくる。

3. 濾粉溶液の調製 前報(1)と同様にして澀粉の 10 mg/ml 溶液（0.5 N KOH）を調製する。

4. クロマトグラフィーおよびアミロースの流下捕集 濾粉溶液の 0.05 ml（澀粉 0.5 mg）を

第 1 図 定量用
濾紙ストリップ

By Motoji Taki (Faculty of Agriculture, Mie University)