酵母の電気泳動核型とその利用

金 子 嘉 信
（大阪大学工学部）

細胞をアガロースゲル中に包埋して調製した DNA 試料を用いて、二方向の電場を交互にかけながら泳動を行うパルスフォールドゲル電気泳動 (PFGE) 法の開発（1）により、従来のアガロースゲル電気泳動では困難であった 50 kbp 以上の DNA 断片を容易に分離、解析できるようになり、ヒトを含めた多くの生物種でゲノム解析が促進されている。さらに酵母では、染色体 DNA をそのままのサイズで検出することができることから、染色体数やそのサイズなどのゲノム構成を知ることが可能になっている。また、PFGE を利用して切断部位の少ない制限酵素による染色体のマクロ制限酵素地図が Saccharomyces cerevisiae（2）、Schizosaccharomyces pombe（3）、Candida albicans（4）で作製されている。こうした流れは細胞形態、発酵性や酵母性といった表現形質で分類をしていた酵母の分類学に、ゲノム情報を導入することを促進し、系統を反映した分類体系の実現に寄与している。そこで、酵母分類学で注目すべき PFGE を利用した研究を紹介してみたい。

1. 酵母の電気泳動核型とは

酵母の電気泳動核型とは、高等生物では、細胞分裂期に細胞核を頭微鏡下で観察できることから、染色体のサイズ、形態、本数についての解析、いわゆる核型分析が行われている。酵母では、PFGE で S. cerevisiae の染色体 DNA を無傷で分離できることは示され（6）、この PFGE 泳動パター
ンが「電気泳動核型」と呼ばれ（6）、染色体のサイズおよび本数に関する情報が得られるようになってきた。図 1 に S. cerevisiae 一倍体株の電気泳動核型を示したものである。同様に S. cerevisiae であっても他の酵母によって染色体の長さが微妙に異なること、さらに異なる酵母でもサイズが同じであればバンドが重なるため、他の酵母を含む多発酵母を示すわけではない。つまり、「染色体長型」（6）が示される。また、調べる酵母が異なると等分の染色体を持つ異数体であったり、同数染色体が同じサイズでできない場合であったり、検出バンド数が増えることになる。さらに泳動条件によって分離可能なサイズ領域が設定されるので、電気泳動核型の解析ではこれらを総合的に判断することが必要である。さらに正確な染色体構成を決定するには、適当な遺伝子プローブを利用したサザンプロット解析による確認が有効である。

2. Saccharomyces 酵母の電気泳動核型分析

S. cerevisiae は遺伝学的系によく解析されている酵母で、16 本の染色体から構成されるゲノムを持つことが明らかにされている（図 1 参照）。クローニングされている遺伝子数も多いため、電気泳動核型を詳細に検討し、ゲノムの変化を解析できる酵母の一つである。この S. cerevisiae と交雑可能であるが、その胞子に生存する性がなく、DNA 相同性も低い兄弟種 S. bayanus と S. paradoxus についての電気泳動核型が示されている。これらの酵母も基本的には 16 本の染色体からなるゲノムで、より似た電気泳動核型を示す（3）。しかし、この兄弟種の PFGE で分離した染色体に対して、以下に示す 8 種類の S. cerevisiae の遺伝子 DNA をプローブとしてサザンプロット解析を行うと、S. paradoxus では ADC 1 プロモーターでシグナルが検出されないが、その他の 7 つの遺伝子についてはほぼ同じサイズの染色体にシグナルが検出されている。ところが S. bayanus では、3 つの遺伝子（LEU 2, RDN 1, SUC 2）のシグナルが検出されたが、CUP 1 と TRP 1 とURA 3 とは非常に弱いシグナルしか示さず、ADC 1 と GAL 4 ではシグナルが検出されなかった（6）。この結果は DNA 相同性の低さを示し、遺伝子レベルで確認したことになり、酵母の種分化過程

† Yeast Electrophoretic Karyotype and Its Application.
Yoshinobu KANEKO (Department of Biotechnology, Faculty of Engineering, Osaka University, Suita, Osaka, 565)
酵母の電気泳動核型とその利用

K. marxianus var. marxianus と K. marxianus var. lactis の電気泳動核型はサイズ分布が異なり、お互いを区別することができる。このことを利用して交雑株および胞子クローニングの解析を行った結果、核融合は行われるが遺伝的組換えは起こらないことがわかった(12)。さらにDNA相対性も低いことから、K. lactis を独立した種として復活させることが提案されている。K. marxianus var. marxianus の電気泳動核型には 2 つのタイプがあると報告されている(14)。これがたんに染色体長多型として解釈できるかどうかは詳細な検討が必要である。

*Klyveromyces* 酵母 21 株について電気泳動核型を調べて、進化の過程で染色体の短くなる傾向にあるという系統的な解釈も報告されている(14)。121 株の *Pichia* 酵母について電気泳動核型を調べて、現在の種の決定要素となっている生理的性状（発酵源の質化性、酵母の硝酸イオン、風味）との関係を検討したところ、生理的性状の似たグループが必ずしもよく似た電気泳動核型のグループに対応していないことがわかった(10)。さらに、Wickerham の系統樹に対応させて比較すると、祖先種から種分化するほど染色体バンド数が増加する傾向が観察されている(10)。有性世代が確認できない不完全酵母の分類においても電気泳動核型が考慮され始めている。

*Candida albicans* のゲノムは 8 本の染色体からなり、基本的には 16 本の染色体を持つ二倍体であると推定されており、染色体長多型や染色体自体の変化についての知見が蓄積されてつつある(10)。13 株の *C. utilis* について電気泳動核型を調べたところ、まったく同じ電気泳動パターンを示す株は認められなかったが、2 グループ (A と B) に分けられた(10)。Hansenua jaditini に対応するグループ A (9 株) では、1.3 〜 2.2 Mbp の領域に 5 本の染色体バンドが、グループ B (4 株) では、0.4 〜 4 Mbp の領域に 11 〜 14 本のバンドが検出される。しかし、グループ B を別種とするにはさらに詳細な解析が必要である。

*C. tropicalis* では 1 〜 3 Mbp の領域に 8 本の染色体バンドが検出されるが、バンド III と V が二重バンドと考えられ、ゲノムサイズは 19.1 Mbp で二倍体と推定されている(11)。

4. 電気泳動核型による不完全酵母の有性世代推定

有性胞子の形成を確認できない酵母は不完全酵母とされて分類されているが、有性世代を持つ酵母でもハトミチリズム株の場合、異なる接合型の株と混合培養を行わない限り胞子形成が行われない。また、研究室で接代培養
表1 電気泳動解析によるCandida酵母の有性世代酵母の推定

<table>
<thead>
<tr>
<th>Candida</th>
<th>有性世代酵母</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. lipolytica</td>
<td>Yarrowia lipolytica</td>
</tr>
<tr>
<td>C. pelliculosa</td>
<td>Hansenula anomala</td>
</tr>
<tr>
<td>C. pseudotropicalis</td>
<td>Kluyveromyces marxianus var. marxianus</td>
</tr>
<tr>
<td>C. utilis</td>
<td>Hansenula jadinii</td>
</tr>
<tr>
<td>C. shetatae</td>
<td>Pichia stipitis</td>
</tr>
<tr>
<td>C. maltosa</td>
<td>Pichia etchellsii</td>
</tr>
<tr>
<td>C. cacaoi</td>
<td>Pichia farinosa</td>
</tr>
<tr>
<td>C. guilliermondii</td>
<td>Pichia guilliermondii</td>
</tr>
</tbody>
</table>

により保存している間に胞子形成能を失う場合が多い、したがって、不完全酵母がタンに有性世代を確認することが出来ていないだけとも考えられる。生理性状観察の結果から推定されたCandida酵母の有性世代を電気泳動解析によって調べると、表1に示す組み合わせでゲノム構成の点からも確認することができた(18,19)。しかし、C. parapsilosisとLodderomyces elongisporus、C. kefyrとKluyveromyces marxianus var. marxianus、C. holmiiとSaccharomyces exiguus、C. glabrataとKluyveromyces phaffiiの関係は二種体バンド数とサイズが顕著に異なるという理由から否定されている。このように、有性世代が認められていない不完全酵母について電気泳動解析を行うと、不完全酵母内の類縁性だけでなく有性世代酵母との関係をより確実に検討することができる。

5. 菌株レベルでの識別

C. cerevisiaeの電気泳動解析では型多様性が観察されており、これを菌株識別に利用することができる。山本ら(19)は77株のワイン酵母(C. cerevisiae)の電気泳動型を調べ、51の異なるパターンとして識別している。このうち32株では、それぞれの相同染色体が互いに必ずしも同じパターン数で増加させる原因となっている。とくに第Ⅰ、Ⅲ、Ⅴ染色体でその例が多い。さらに、1株を除いてすべての株で第ⅥとⅧ染色体、第ⅢとⅥ染色体、第ⅤとⅧ染色体、第ⅢとⅥ染色体の少なくとも1組でバンドが重なって観察された。また同株であるはずの株が同じ電気泳動型を示さない場合もあることがわかった。ポルトガル地方で、自然発酵で行われている赤ワインの醸造過程における菌株の変異を2年間にわたり電気泳動型による識別で調べたところ、醸造期間中常に3種類の電気泳動型が優先的に検出されている(20)。このうち1つは約60％の頻度で検出され、醸酵所に住んでいる株と考えられている。微生物株保存施設である財団法人発酵研究所では酵母菌株保存の管理に電気泳動型情報を利用しており、S. cerevisiaeおよびその同種を菌株レベルで確認して保存を行っている(21)。

おわりに

電気泳動型は、その泳動速度と菌株の倍数性や染色体長型などに注意して分析を行うことにより、ゲノムを構成する染色体の本数とサイズに関する知見を与えてくれる。したがって、電気泳動型分析は、リボソームRNAの塩基配列やDNAの相対性の情報とともに、確かにシステムを反映した分類を実現するうえで非常に有効な方法である。現在のところ、主に電気泳動型の比較までにとどまっているが、株内の多型性についての詳細な解析が進むにつれて、酵母分類学における電気泳動型の役割は大きくなると予想される。またS. cerevisiaeで示されたように電気泳動型が菌株の識別に利用できることから、電気泳動型を考慮した分類は種の同定という点からも非常に有用といえる。さらに、酵母の進化を研究するうえでもより確かに情報を与えてくれそうである。

(8) 金子嘉信、坂野 光、「酵母のバイオサイエンス伝統と新展開—」学会出版センター、東京、1990、pp. 171–185.


(22) 山田より子，見方典三郎，坂野 慎：日本微生物株保存連盟会誌，9，95–119 (1993).