2023 年 14 巻 2 号 p. 292-307
A global stabilization method for the conversion characteristics of a bidirectional DC/DC converter and its application in peer-to-peer energy transfer systems is described. Peer-to-peer energy transfer is a control strategy in which the supply and load cooperate to transmit power, and it requires the global operation of the converter. According to the power relation, the bidirectional DC/DC converter has two equilibrium points. To realize global stability, a unique equilibrium point is achieved by eliminating the untargeted equilibrium point using the power relationship between the ports. Global stability is realized by setting feedback gains to converge globally to this equilibrium point. The experimental results demonstrate the global stability of the proposed method when applied to a stand-alone system and a peer-to-peer energy transfer system.