Caking of KCl–NaCl Powder and its Prevention by Amino Acids

Yutaka TAKAKURA*, Tatsuya KAWABE* and Hideo MORITA*

*Food Research Laboratories, Takara Shuzo Co., Ltd.,
3-4-1 Seta, Otsu, Shiga 520-21

Prevention of the caking of KCl–NaCl powder produced by a spray-dryer was investigated. The spray-dried powders of both a simple KCl–NaCl mixture and a mixture of KCl and NaCl with an amino acid that was less soluble than KCl and NaCl and that had hydrophobic functional groups were obtained in the form of particles that were hollow spheres. When stored in high humidity, the first powder soon caked, but the second did not. This difference could be explained by the solubility and polarity of the amino acid added. When the solubility of the amino acid added was higher than that of KCl or NaCl, the surface of the spray-dried particles was crystalline and porous. When the amino acid had hydrophobic functional groups and its solubility was lower than that of KCl or NaCl, the surface of the spray-dried powder was smooth and not porous; this result suggests that the surface of the spray-dried particles was covered with amino acid molecules. We concluded that the solubility and the functional groups of the amino acids that were added to a KCl–NaCl mixture could be used to control caking of the spray-dried powder.

The mean daily intake of NaCl in Japan is increasing year by year to 12.5 g/day in 19901). The Ministry of Health and Welfare, Japan, is recommending to reduce NaCl intake to 10 g/day1)-3).

Food manufacturers are trying to formulate low–sodium or reduced–sodium foods4),5). Potassium chloride is the most popular substitute, and mixtures of NaCl and KCl have been used in a variety of processed foods6). Powdering of NaCl or KCl, especially by spray–dryers, has been undertaken. However, the spray–dried powders of mixtures of KCl and NaCl cake so easily that it is difficult to store them. The caking of NaCl powder has been studied but the phenomenon cannot be prevented yet.

We studied the caking of KCl–NaCl powder, and a part of the caking phenomenon was elucidated.

Materials and Methods

Materials
KCl, NaCl and amino acids purchased from Nacalai Tesque, Inc., were all guaranteed reagents.

Spray-drying
A mixture of 24.5 g KCl, 24.5 g NaCl and 1.0 g amino acid in 500 ml of water was dried by a spray–dryer (Mobile Minor model, Rotary Atomizer Type, Niro Atomizer Ltd., Soeborg, Denmark). The temperatures of inlet and outlet were 140°C and 85°C, respectively. The rotational rate of rotary atomizer was ca. 32 500 r.p.m.

Preservation test
Spray–dried powder was put into a zippered polyethylene pouch at 30°C and 65% relative humidity in a chamber and kept at a constant temperature and humidity (LH–20–01 PRG–La, Nagano Science Equipment Mfg. Co., Ltd., Osaka, Japan) for two days.
Observation of spray-dried powder

Spray-dried powder was coated with Au by an Ion Coater (IB-3 model, Eiko Engineering Co., Ltd., Ibaraki, Japan) that was observed under a scanning electron microscope (SEM; Hitachi model S-510, Tokyo, Japan) before and after the preservation test at the acceleration voltage of 15 KV (×500 and ×2000) in the usual way.

Results and Discussion

Figure 1 shows SEM micrographs of spray-dried powders of KCl and NaCl. Both powders were obtained in a crystallized form as reported earlier. When a mixture of KCl and NaCl was spray-dried, a powder of spherical and hollow particles was formed (Fig. 2). The powder was found to cake during storage. The particles were spherical hollow when KCl and NaCl were mixed at weight ratios of from 3:7 to 7:3 by weight. In further experiments, the ratio of KCl and NaCl was fixed at 1:1, because this ratio gave particles a suitable shape on spherical and hollow.

Figure 3 shows the spray-dried powder of a mixture of KCl, NaCl and monosodium glutamate. This powder also had particles that were spherical and hollow. In a mixture containing amino acid, the weight ratio of KCl, NaCl and the amino acid was fixed at 49:49:2, because this ratio gave particles a suitable shape on spherical and hollow.
The powder were mixed with KCl, NaCl and one of 20 kinds of amino acid that were studied. The results suggested when the solubility of the amino acid was higher than that of KCl or NaCl, the surface of the spray-dried particles became crystalline and porous, and the powder caked. When the solubility of the amino acid was lower than that of KCl or NaCl, the surface of the particles became smooth and not porous.

For example, Fig. 4 shows SEM micrographs of spray-dried powders of KCl and NaCl mixtures to which L-proline or L-tryptophan was added. Because the solubility of L-proline is higher than that of KCl or NaCl, the surface of the spray-dried particles was crystalline and porous. Because the solubility of L-tryptophan is lower than that of KCl or NaCl, the surface of the particles was smooth and not porous. During the preservation test, the powder with L-proline caked but the powder with L-tryptophan did not.

Diagrams of cross-sections of particles KCl, NaCl and L-proline mixture or KCl, NaCl and L-tryptophan mixture (Fig. 5) may help to explain the reason for this phenomenon. The surface of the former was covered with KCl and NaCl, and it caked easily. The surface of the latter was covered with L-tryptophan, and it did not cake.

Fig. 4 SEM micrographs of spray-dried powders of mixtures of KCl, NaCl and L-proline or L-tryptophan (×500)

A, L-proline (before preservation test); B, L-proline (after preservation test); C, L-tryptophan (before preservation test); D, L-tryptophan (after preservation test)
In general, the vapor pressure of water rises as the atmospheric temperature rises, and moisture escapes in vapor from the surface of particles\(^8\). As a particle dries, the moisture moves from the inside to the surface\(^9,10\). van ARSDEL et al.\(^{11}\) reported that dissolved substances move from the outside to the inside as drying progresses. In addition, when a particle dries, a concentration gradient is generated between the outside and the center, which is still wet, and substances diffuse from the outside to the inside. For these reasons, in a spray-dried powder, the outer layer was probably made of the most insoluble substance and the inner layer was made of substances with higher solubility.

Figure 6 is a SEM micrograph of spray-dried particles of a mixture of KCl, NaCl and L-tryptophan showing the inside of the particles. The surface of the particles was smooth and not porous, and the insides were crystalline which is evidence that our explanation of the differences in cabins is right. The inside of the particles of a mixture of KCl, NaCl and L-phenylalanine was crystalline, too.

The solubilities of KCl and NaCl are about the same. In a mixture of KCl, NaCl and amino acid, the amino acid moves and diffuses if it is more soluble than KCl or NaCl. The experimental results could not be interpreted simply by solubility. Fig. 7 shows SEM micrographs of particles of mixtures of KCl and NaCl with either L-alanine or L-phenylalanine. The solubilities of both L-alanine and L-phenylalanine are lower than those of KCl and NaCl. The surface of the particles with L-alanine was smooth but porous. That of particles with L-phenylalanine was not porous or smooth. During the preservation test, the powder with L-alanine caked slightly, but that with L-phenylalanine did not cake at all. Fig. 8 shows a diagram to explain this phenomenon. The surface of the latter was covered with L-phenylalanine and the powder did not readily cake.

On the other hand, there were KCl, NaCl and L-alanine on the surface of the particles, the
powder would cake readily.

Figure 9 shows SEM micrographs of particles of a mixture of KCl, NaCl and L-asparagine before and after the preservation test. The solubility of L-asparagine is lower than that of KCl and NaCl. If the particles were covered with L-asparagine, their surface not be porous or smooth. However, the particles were of several different shapes. During the preservation test, this powder caked, probably because L-asparagine has hydrophilic functional groups. Powder with L-glutamic acid caked, too. In short, functional groups of amino acids affected the caking phenomenon.

Based on the results described above, we classified in our eyes amino acids into four groups (Table 1). Amino acids of group A were more soluble than KCl and NaCl. They did not prevent caking. Groups B and C were intermediate in effect between groups A and D. Amino acids of group D were more insoluble than KCl and NaCl and had hydrophobic functional groups. When added to a mixture of KCl and NaCl and spray-dried, they were most effective in preventing caking in high humidity.

Thus, it was possible to prepare a stable KCl-NaCl powder by the addition of an amino acid that was less soluble than KCl and NaCl and that had hydrophobic functional groups. Such a powder would be useful in the food
Fig. 8 Diagrams of cross-sections of spray-dried particles
A, L-phenylalanine; B, L-alanine

industry.

References

(Received May 14, 1993)
Table 1 Grades of caking

<table>
<thead>
<tr>
<th>Substance</th>
<th>Group</th>
<th>Solubility (g) (25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proline</td>
<td>A</td>
<td>162.3</td>
</tr>
<tr>
<td>Serine</td>
<td>A</td>
<td>38.0</td>
</tr>
<tr>
<td>NaCl</td>
<td>—</td>
<td>36.1</td>
</tr>
<tr>
<td>KCl</td>
<td>—</td>
<td>35.5</td>
</tr>
<tr>
<td>Glycine</td>
<td>B</td>
<td>25.0</td>
</tr>
<tr>
<td>Alanine</td>
<td>B</td>
<td>16.5</td>
</tr>
<tr>
<td>Threonine</td>
<td>C</td>
<td>14.1 (52°C)</td>
</tr>
<tr>
<td>Valine</td>
<td>C</td>
<td>8.9</td>
</tr>
<tr>
<td>Methionine</td>
<td>C</td>
<td>5.6 (30°C)</td>
</tr>
<tr>
<td>Glutamine</td>
<td>C</td>
<td>4.3</td>
</tr>
<tr>
<td>Histidine</td>
<td>C</td>
<td>4.3</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>C</td>
<td>4.1</td>
</tr>
<tr>
<td>Asparagine</td>
<td>C</td>
<td>3.0</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>D</td>
<td>3.0</td>
</tr>
<tr>
<td>Leucine</td>
<td>D</td>
<td>2.2</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>D</td>
<td>1.1</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>D</td>
<td>0.8</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>D</td>
<td>0.6</td>
</tr>
</tbody>
</table>

A, Did not prevent caking.
B and C, Helped to prevent caking (B more than C).
D, Prevented caking